首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Virtual Denormalization via Array Index Reference for Main Memory OLAP
【24h】

Virtual Denormalization via Array Index Reference for Main Memory OLAP

机译:通过主存储器OLAP的数组索引参考进行虚拟非规范化

获取原文
获取原文并翻译 | 示例

摘要

Denormalization is a common tactic for enhancing performance of data warehouses, though its side-effect is quite obvious. Besides being confronted with update abnormality, denormalization has to consume additional storage space. As a result, this tactic is rarely used in main memory databases, which regards storage space, i.e., RAM, as scarce resource. Nevertheless, our research reveals that main memory database can benefit enormously from denormalization, as it is able to remarkably simplify the query processing plans and reduce the computation cost. In this paper, we present A-Store, a main memory OLAP engine for star/snowflake schemas. Instead of generating fully materialized denormalization, A-Store resorts to by treating array indexes as primary keys. This design allows us to harvest the benefit of denormalization without sacrificing additional RAM space. A-Store uses a generic query processing model for all SPJGA queries. It applies a number of state-of-the-art optimization methods, such as vectorized scan and aggregation, to achieve superior performance. Our experiments show that A-Store outperforms the most prestigious MMDB systems significantly in star/snowflake schema based query processing.
机译:非规范化是提高数据仓库性能的常用策略,尽管其副作用非常明显。除了要面对更新异常,非规范化还必须消耗额外的存储空间。结果,这种策略很少用在主存储器数据库中,该主存储器数据库将存储空间即RAM视为稀缺资源。尽管如此,我们的研究表明,主内存数据库可以从非规范化中受益匪浅,因为它可以显着简化查询处理计划并降低计算成本。在本文中,我们介绍了A-Store,这是一种用于星型/雪花模式的主内存OLAP引擎。 A-Store没有生成完全物化的非规范化,而是通过将数组索引视为主键来实现。这种设计使我们能够在不牺牲额外RAM空间的情况下获得非规范化的好处。 A-Store对所有SPJGA查询使用通用查询处理模型。它采用了许多最先进的优化方法,例如矢量化扫描和聚合,以实现卓越的性能。我们的实验表明,在基于星型/雪花模式的查询处理中,A-Store的性能明显优于最著名的MMDB系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号