首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Temporal Skeletonization on Sequential Data: Patterns, Categorization, and Visualization
【24h】

Temporal Skeletonization on Sequential Data: Patterns, Categorization, and Visualization

机译:时序数据的时间骨架化:模式,分类和可视化

获取原文
获取原文并翻译 | 示例

摘要

Sequential pattern analysis aims at finding statistically relevant temporal structures where the values are delivered in a sequence. With the growing complexity of real-world dynamic scenarios, more and more symbols are often needed to encode the sequential values. This is so-called “curse of cardinality”, which can impose significant challenges to the design of sequential analysis methods in terms of computational efficiency and practical use. Indeed, given the overwhelming scale and the heterogeneous nature of the sequential data, new visions and strategies are needed to face the challenges. To this end, in this paper, we propose a “temporal skeletonization” approach to proactively reduce the cardinality of the representation for sequences by uncovering significant, hidden temporal structures. The key idea is to summarize the temporal correlations in an undirected graph, and use the “skeleton” of the graph as a higher granularity on which hidden temporal patterns are more likely to be identified. As a consequence, the embedding topology of the graph allows us to translate the rich temporal content into a metric space. This opens up new possibilities to explore, quantify, and visualize sequential data. Our approach has shown to greatly alleviate the curse of cardinality in challenging tasks of sequential pattern mining and clustering. Evaluation on a business-to-business (B2B) marketing application demonstrates that our approach can effectively discover critical buying paths from noisy customer event data.
机译:顺序模式分析旨在发现统计上相关的时间结构,在这些结构中值按顺序传递。随着现实世界动态场景的复杂性不断提高,经常需要越来越多的符号来编码顺序值。这就是所谓的“基数诅咒”,它会在计算效率和实际使用方面对顺序分析方法的设计提出重大挑战。确实,鉴于庞大的规模和顺序数据的异构性质,需要新的愿景和策略来应对挑战。为此,在本文中,我们提出了一种“时间框架化”方法,通过发现重要的,隐藏的时间结构来主动减少序列表示的基数。关键思想是总结无向图中的时间相关性,并使用图的“骨架”作为更高的粒度,在该粒度上更有可能识别隐藏的时间模式。结果,图的嵌入拓扑允许我们将丰富的时间内容转换为度量空间。这为探索,量化和可视化顺序数据开辟了新的可能性。我们的方法已经显示出可以极大地缓解基数性在顺序模式挖掘和聚类的挑战性任务中的困扰。对企业对企业(B2B)营销应用程序的评估表明,我们的方法可以有效地从嘈杂的客户事件数据中发现关键的购买路径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号