首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Reducing Uncertainty of Probabilistic Top- Ranking via Pairwise Crowdsourcing
【24h】

Reducing Uncertainty of Probabilistic Top- Ranking via Pairwise Crowdsourcing

机译:通过成对众包降低概率最高排名的不确定性

获取原文
获取原文并翻译 | 示例

摘要

Probabilistic top-k ranking is an important and well-studied query operator in uncertain databases. However, the quality of top-k results might be heavily affected by the ambiguity and uncertainty of the underlying data. Uncertainty reduction techniques have been proposed to improve the quality of top-k results by cleaning the original data. Unfortunately, most data cleaning models aim to probe the exact values of the objects individually and therefore do not work well for subjective data types, such as user ratings, which are inherently probabilistic. In this paper, we propose a novel pairwise crowdsourcing model to reduce the uncertainty of top-k ranking using a crowd of domain experts. Given a crowdsourcing task of limited budget, we propose efficient algorithms to select the best object pairs for crowdsourcing that will bring in the highest quality improvement. Extensive experiments show that our proposed solutions outperform a random selection method by up to 30 times in terms of quality improvement of probabilistic top-k ranking queries. In terms of efficiency, our proposed solutions can reduce the elapsed time of a brute-force algorithm from several days to one minute.
机译:概率最高的k排序是不确定数据库中重要且经过充分研究的查询运算符。但是,top-k结果的质量可能会受到基础数据的歧义和不确定性的严重影响。已提出减少不确定性的技术,以通过清除原始数据来改善top-k结果的质量。不幸的是,大多数数据清理模型旨在单独探测对象的精确值,因此不适用于主观数据类型,例如用户评分,这是固有的概率。在本文中,我们提出了一种新颖的成对众包模型,以使用一群领域专家来减少top-k排名的不确定性。鉴于预算有限的众包任务,我们提出了有效的算法来选择最佳对象对进行众包,从而带来最高的质量改进。大量实验表明,就概率最高的前k位查询的质量改进而言,我们提出的解决方案比随机选择方法的性能高30倍。在效率方面,我们提出的解决方案可以将蛮力算法的运行时间从几天减少到一分钟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号