首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Hierarchical Contextual Attention Recurrent Neural Network for Map Query Suggestion
【24h】

Hierarchical Contextual Attention Recurrent Neural Network for Map Query Suggestion

机译:分层上下文注意递归神经网络的地图查询建议

获取原文
获取原文并翻译 | 示例

摘要

The query logs from an on-line map query system provide rich cues to understand the behaviors of human crowds. With the growing ability of collecting large scale query logs, the query suggestion has been a topic of recent interest. In general, query suggestion aims at recommending a list of relevant queries w.r.t. users' inputs via an appropriate learning of crowds' query logs. In this paper, we are particularly interested in map query suggestions (e.g., the predictions of location-related queries) and propose a novel model Hierarchical Contextual Attention Recurrent Neural Network (HCAR-NN) for map query suggestion in an encoding-decoding manner. Given crowds map query logs, our proposed HCAR-NN not only learns the local temporal correlation among map queries in a query session (e.g., queries in a short-term interval are relevant to accomplish a search mission), but also captures the global longer range contextual dependencies among map query sessions in query logs (e.g., how a sequence of queries within a short-term interval has an influence on another sequence of queries). We evaluate our approach over millions of queries from a commercial search engine (i.e., Baidu Map). Experimental results show that the proposed approach provides significant performance improvements over the competitive existing methods in terms of classical metrics (i.e., Recall@K and MRR) as well as the prediction of crowds' search missions.
机译:来自在线地图查询系统的查询日志提供了丰富的线索来了解人群的行为。随着收集大规模查询日志的能力的不断提高,查询建议已成为近期关注的话题。通常,查询建议旨在推荐一系列相关查询。通过适当学习人群的查询日志来输入用户的信息。在本文中,我们对地图查询建议(例如,与位置相关的查询的预测)特别感兴趣,并提出了一种新的模型分层上下文关联注意力递归神经网络(HCAR-NN)以编码-解码方式用于地图查询建议。给定人群地图查询日志,我们提出的HCAR-NN不仅学习查询会话中地图查询之间的局部时间相关性(例如,短期间隔内的查询与完成搜索任务有关),而且可以捕获更长的全局时间查询日志中地图查询会话之间的范围上下文相关性(例如,短期间隔内的一系列查询如何影响另一个查询序列)。我们对来自商业搜索引擎(即百度地图)的数百万次查询的方法进行了评估。实验结果表明,与经典的指标(即Recall @ K和MRR)以及人群搜索任务的预测相比,该方法相对于竞争现有方法具有显着的性能提升。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号