首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >A Systematic Approach to Clustering Whole Trajectories of Mobile Objects in Road Networks
【24h】

A Systematic Approach to Clustering Whole Trajectories of Mobile Objects in Road Networks

机译:路网中移动物体整体轨迹聚类的系统方法

获取原文
获取原文并翻译 | 示例

摘要

Most of mobile object trajectory clustering analysis to date has been focused on clustering the location points or sub-trajectories extracted from trajectory data. This paper presents TraceMob, a systematic approach to clustering whole trajectories of mobile objects traveling in road networks. TraceMob as a whole trajectory clustering framework has three unique features. First, we design a quality measure for the distance between two whole trajectories. By quality, we mean that the distance measure can capture the complex characteristics of trajectories as a whole including their varying lengths and their constrained movement in the road network space. Second, we develop an algorithm that transforms whole trajectories in a road network space into multidimensional data points in a euclidean space while preserving their relative distances in the transformed metric space. This transformation enables us to effectively shift the clustering task for whole mobile object trajectories in the complex road network space to the traditional clustering task for multidimensional data in a euclidean space. Third, we develop a cluster validation method for evaluating the clustering quality in both the transformed metric space and the road network space. Extensive experimental evaluation with trajectories generated on real road network maps of different cities shows that TraceMob produces higher quality clustering results and outperforms existing approaches by an order of magnitude.
机译:迄今为止,大多数移动对象轨迹聚类分析都集中在对从轨迹数据中提取的位置点或子轨迹进行聚类上。本文介绍了TraceMob,这是一种对道路网络中移动对象的整个轨迹进行聚类的系统方法。 TraceMob作为一个整体的轨迹聚类框架具有三个独特的功能。首先,我们为两个完整轨迹之间的距离设计质量度量。所谓质量,是指距离度量可以捕获整个轨迹的复杂特征,包括其变化的长度以及在路网空间中的受约束的运动。其次,我们开发了一种算法,可将道路网络空间中的整个轨迹转换为欧氏空间中的多维数据点,同时在转换后的度量空间中保留它们的相对距离。这种转换使我们能够有效地将复杂道路网络空间中整个移动对象轨迹的聚类任务转移到欧氏空间中多维数据的传统聚类任务。第三,我们开发了一种聚类验证方法,用于评估转换后的度量空间和道路网络空间中的聚类质量。通过在不同城市的真实道路网络地图上生成的轨迹进行的广泛实验评估表明,TraceMob可以产生更高质量的聚类结果,并且比现有方法要高出一个数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号