首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Unsupervised Visual Hashing with Semantic Assistant for Content-Based Image Retrieval
【24h】

Unsupervised Visual Hashing with Semantic Assistant for Content-Based Image Retrieval

机译:语义助手的无监督视觉散列,用于基于内容的图像检索

获取原文
获取原文并翻译 | 示例

摘要

As an emerging technology to support scalable content-based image retrieval (CBIR), hashing has recently received great attention and became a very active research domain. In this study, we propose a novel unsupervised visual hashing approach called semantic-assisted visual hashing (SAVH). Distinguished from semi-supervised and supervised visual hashing, its core idea is to effectively extract the rich semantics latently embedded in auxiliary texts of images to boost the effectiveness of visual hashing without any explicit semantic labels. To achieve the target, a unified unsupervised framework is developed to learn hash codes by simultaneously preserving visual similarities of images, integrating the semantic assistance from auxiliary texts on modeling high-order relationships of inter-images, and characterizing the correlations between images and shared topics. Our performance study on three publicly available image collections: Wiki, MIR Flickr, and NUS-WIDE indicates that SAVH can achieve superior performance over several state-of-the-art techniques.
机译:作为支持可伸缩的基于内容的图像检索(CBIR)的新兴技术,哈希技术最近受到了极大的关注,并成为一个非常活跃的研究领域。在这项研究中,我们提出了一种新颖的无监督视觉哈希方法,称为语义辅助视觉哈希(SAVH)。区别于半监督和监督视觉哈希,其核心思想是有效提取潜在嵌入在图像辅助文本中的丰富语义,以提高视觉哈希的有效性,而无需任何显式语义标签。为了实现该目标,开发了一个统一的无监督框架来学习哈希码,方法是同时保留图像的视觉相似性,集成辅助文本的语义辅助以建模图像间的高阶关系,并表征图像与共享主题之间的相关性。我们对三种公开可用的图像集(Wiki,MIR Flickr和NUS-WIDE)的性能研究表明,SAVH可以比几种最先进的技术实现更高的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号