首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Filtering Out Infrequent Behavior from Business Process Event Logs
【24h】

Filtering Out Infrequent Behavior from Business Process Event Logs

机译:从业务流程事件日志中过滤出不常见的行为

获取原文
获取原文并翻译 | 示例

摘要

In the era of “big data”, one of the key challenges is to analyze large amounts of data collected in meaningful and scalable ways. The field of process mining is concerned with the analysis of data that is of a particular nature, namely data that results from the execution of business processes. The analysis of such data can be negatively influenced by the presence of outliers, which reflect infrequent behavior or “noise”. In process discovery, where the objective is to automatically extract a process model from the data, this may result in rarely travelled pathways that clutter the process model. This paper presents an automated technique to the removal of infrequent behavior from event logs. The proposed technique is evaluated in detail and it is shown that its application in conjunction with certain existing process discovery algorithms significantly improves the quality of the discovered process models and that it scales well to large datasets.
机译:在“大数据”时代,主要挑战之一是分析以有意义和可扩展的方式收集的大量数据。流程挖掘领域涉及对具有特殊性质的数据(即,由业务流程的执行产生的数据)的分析。对此类数据的分析可能会受到异常值的负面影响,这些异常值反映了不常见的行为或“噪音”。在过程发现中,目标是从数据中自动提取过程模型,这可能会导致很少经过的路径使过程模型变得混乱。本文提出了一种自动技术,用于从事件日志中删除不常见的行为。对提出的技术进行了详细评估,结果表明,该技术与某些现有过程发现算法结合使用可显着提高发现的过程模型的质量,并且可以很好地扩展到大型数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号