首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >LN-SNE: Log-Normal Distributed Stochastic Neighbor Embedding for Anomaly Detection
【24h】

LN-SNE: Log-Normal Distributed Stochastic Neighbor Embedding for Anomaly Detection

机译:LN-SNE:对数正态分布随机邻居嵌入用于异常检测

获取原文
获取原文并翻译 | 示例

摘要

We present a new unsupervised dimensionality reduction technique, called LN-SNE, for anomaly detection. LN-SNE generates a parametric embedding by means of Restricted Boltzmann Machines and uses a heavy-tail distribution to project data to a lower dimensional space such that dissimilarities between normal data and anomalies are preserved or strengthened. We compare LN-SNE to several benchmark dimensionality reduction methods on real datasets. The results suggest that LN-SNE for anomaly detection is less sensitive to the dimension of the latent space than the other methods and outperforms them in terms of accuracy. We empirically show that our technique scales near-linearly with respect to the number of dimensions and data size.
机译:我们提出了一种新的无监督降维技术,称为LN-SNE,用于异常检测。 LN-SNE通过受限的玻尔兹曼机生成参数嵌入,并使用重尾分布将数据投影到较低维度的空间,这样可以保留或加强正常数据与异常之间的差异。我们将LN-SNE与实际数据集上的几种基准降维方法进行了比较。结果表明,与其他方法相比,用于异常检测的LN-SNE对潜在空间的尺寸不那么敏感,并且在准确性方面优于它们。我们凭经验表明,我们的技术相对于维数和数据大小几乎呈线性扩展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号