首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Social-Aware Sequential Modeling of User Interests: A Deep Learning Approach
【24h】

Social-Aware Sequential Modeling of User Interests: A Deep Learning Approach

机译:用户兴趣的社交感知顺序建模:一种深度学习方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose to leverage the emerging deep learning techniques for sequential modeling of user interests based on big social data, which takes into account influence of their social circles. First, we present a preliminary analysis for two popular big datasets from Yelp and Epinions. We show statistically sequential actions of all users and their friends, and discover both temporal autocorrelation and social influence on decision making, which motivates our design. Then, we present a novel hybrid deep learning model, Social-Aware Long Short-Term Memory (SA-LSTM), for predicting the types of item/PoIs that a user will likely buy/visit next, which features stacked LSTMs for sequential modeling and an autoencoder-based deep model for social influence modeling. Moreover, we show that SA-LSTM supports end-to-end training. We conducted extensive experiments for performance evaluation using the two real datasets from Yelp and Epinions. The experimental results show that (1) the proposed deep model significantly improves prediction accuracy compared to widely used baseline methods; (2) the proposed social influence model works effectively; and (3) going deep does help improve prediction accuracy but a not-so-deep deep structure leads to the best performance.
机译:在本文中,我们建议利用新兴的深度学习技术对基于大社交数据的用户兴趣进行顺序建模,同时考虑到其社交圈的影响。首先,我们对来自Yelp和Epinions的两个流行的大型数据集进行了初步分析。我们显示了所有用户及其朋友的统计顺序操作,并发现了时间自相关和社会对决策的影响,这激励了我们的设计。然后,我们提出了一种新颖的混合深度学习模型,即社交感知的长期短期记忆(SA-LSTM),用于预测用户接下来可能会购买/访问的商品/兴趣点的类型,其中包含用于顺序建模的堆叠式LSTM。以及用于社交影响力建模的基于自动编码器的深度模型。此外,我们表明SA-LSTM支持端到端培训。我们使用Yelp和Epinions的两个真实数据集进行了性能评估的广泛实验。实验结果表明:(1)与广泛使用的基线方法相比,提出的深度模型显着提高了预测准确性; (2)提出的社会影响力模型行之有效; (3)深入确实有助于提高预测精度,但深度不太深的结构会导致最佳性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号