首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >QANet: Tensor Decomposition Approach for Query-Based Anomaly Detection in Heterogeneous Information Networks
【24h】

QANet: Tensor Decomposition Approach for Query-Based Anomaly Detection in Heterogeneous Information Networks

机译:QANet:异构信息网络中基于查询的异常检测的张量分解方法

获取原文
获取原文并翻译 | 示例

摘要

Complex networks have now become integral parts of modern information infrastructures. This paper proposes a user-centric method for detecting anomalies in heterogeneous information networks, in which nodes and/or edges might be from different types. In the proposed anomaly detection method, users interact directly with the system and anomalous entities can be detected through queries. Our approach is based on tensor decomposition and clustering methods. We also propose a network generation model to construct synthetic heterogeneous information network to test the performance of the proposed method. The proposed anomaly detection method is compared with state-of-the-art methods in both synthetic and real-world networks. Experimental results show that the proposed tensor-based method considerably outperforms the existing anomaly detection methods.
机译:复杂的网络现已成为现代信息基础架构不可或缺的部分。本文提出了一种以用户为中心的方法来检测异构信息网络中的异常,其中节点和/或边缘可能来自不同类型。在提出的异常检测方法中,用户直接与系统进行交互,并且可以通过查询来检测异常实体。我们的方法基于张量分解和聚类方法。我们还提出了一种网络生成模型来构建综合异构信息网络,以测试所提出方法的性能。将拟议的异常检测方法与综合和现实网络中的最新技术进行了比较。实验结果表明,所提出的基于张量的方法明显优于现有的异常检测方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号