首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >A New Robust Approach for Reversible Database Watermarking with Distortion Control
【24h】

A New Robust Approach for Reversible Database Watermarking with Distortion Control

机译:具有失真控制的可逆数据库水印的鲁棒新方法。

获取原文
获取原文并翻译 | 示例

摘要

Nowadays information is crucial in many fields such as medicine, science and business, where databases are used effectively for information sharing. However, the databases face the risk of being pirated, stolen or misused, which may result in a lot of security threats concerning ownership rights, data tampering and privacy protection. Watermarking is utilized to enforce ownership rights on shared relational databases. Many reversible watermarking methods are proposed recently to protect rights of owners along with recovering original data. Most state-of-the-art methods modify the original data to a large extent, result in data quality degradation, and cannot achieve good balance between robustness against malicious attacks and data recovery. In this paper, we propose a robust and reversible database watermarking technique, Genetic Algorithm and Histogram Shifting Watermarking (GAHSW), for numerical relational database. The genetic algorithm is used to select the best secret key for grouping database, where the watermarking can be embedded with balanced distortion and capacity. The histogram of the prediction error is shifted to embed the watermark with good robustness. Experimental results demonstrate the effectiveness of GAHSW and show that it outperforms state-of-the-art approaches in terms of robustness against malicious attacks and preservation of data quality.
机译:如今,信息在医学,科学和商业等许多领域都至关重要,在这些领域中,数据库可有效地用于信息共享。但是,数据库面临被盗用,被盗或滥用的风险,这可能会导致许多与所有权,数据篡改和隐私保护有关的安全威胁。水印被用于在共享关系数据库上实施所有权。最近提出了许多可逆的水印方法,以保护所有者的权利以及恢复原始数据。大多数最先进的方法都会在很大程度上修改原始数据,导致数据质量下降,并且无法在抵抗恶意攻击的健壮性和数据恢复之间取得良好的平衡。在本文中,我们为数值关系数据库提出了一种健壮且可逆的数据库水印技术,即遗传算法和直方图移位水印(GAHSW)。遗传算法用于为分组数据库选择最佳秘密密钥,其中可以以平衡的失真和容量嵌入水印。预测误差的直方图被移位以嵌入具有良好鲁棒性的水印。实验结果证明了GAHSW的有效性,并表明它在抵御恶意攻击的健壮性和数据质量的保留方面优于最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号