首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Location Inference for Non-Geotagged Tweets in User Timelines
【24h】

Location Inference for Non-Geotagged Tweets in User Timelines

机译:用户时间轴中非地理标记推文的位置推断

获取原文
获取原文并翻译 | 示例

摘要

Social media like Twitter have become globally popular in the past decade. Thanks to the high penetration of smartphones, social media users are increasingly going mobile. This trend has contributed to foster various location based services deployed on social media, the success of which heavily depends on the availability and accuracy of users' location information. However, only a very small fraction of tweets in Twitter are geo-tagged. Therefore, it is necessary to infer locations for tweets in order to attain the purpose of those location based services. In this paper, we tackle this problem by scrutinizing Twitter user timelines in a novel fashion. First of all, we split each user's tweet timeline temporally into a number of clusters, each tending to imply a distinct location. Subsequently, we adapt two machine learning models to our setting and design classifiers that classify each tweet cluster into one of the pre-defined location classes at the city level. The Bayes based model focuses on the information gain of words with location implications in the user-generated contents. The convolutional LSTM model treats user-generated contents and their associated locations as sequences and employs bidirectional LSTM and convolution operation to make location inferences. The two models are evaluated on a large set of real Twitter data. The experimental results suggest that our models are effective at inferring locations for non-geotagged tweets and the models outperform the state-of-the-art and alternative approaches significantly in terms of inference accuracy.
机译:在过去十年中,像Twitter这样的社交媒体已在全球范围内流行。由于智能手机的高度普及,社交媒体用户越来越多地移动。这种趋势有助于培育部署在社交媒体上的各种基于位置的服务,其成功很大程度上取决于用户位置信息的可用性和准确性。但是,Twitter中只有极少数的推文带有地理标签。因此,有必要推断推文的位置,以达到基于位置的服务的目的。在本文中,我们通过以新颖的方式仔细检查Twitter用户时间轴来解决此问题。首先,我们将每个用户的tweet时间轴在时间上划分为多个集群,每个集群都暗示着一个不同的位置。随后,我们将两个机器学习模型应用于我们的设置和设计分类器,这些分类器将每个tweet集群分类为城市级别的预定义位置类别之一。基于贝叶斯的模型着重于用户生成的内容中具有位置含义的单词的信息获取。卷积LSTM模型将用户生成的内容及其相关位置视为序列,并使用双向LSTM和卷积运算来进行位置推断。这两个模型是根据大量真实的Twitter数据进行评估的。实验结果表明,我们的模型可以有效地推断出非地理标签推文的位置,并且在推断准确性方面,该模型的性能明显优于最新技术和替代方法。

著录项

  • 来源
  • 作者单位

    Zhejiang Univ, Dept Comp Sci, Hangzhou 310027, Zhejiang, Peoples R China;

    Aalborg Univ, Dept Comp Sci, DK-9220 Aalborg, Denmark;

    NTENT, Barcelona 08018, Spain;

    Zhejiang Univ, Dept Comp Sci, Hangzhou 310027, Zhejiang, Peoples R China;

    Zhejiang Univ, Dept Comp Sci, Hangzhou 310027, Zhejiang, Peoples R China|Zhejiang Univ, State Key Lab CAD&CG, Hangzhou 310027, Zhejiang, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Twitter; location inference; bayes; LSTM;

    机译:Twitter;位置推断;贝叶斯;LSTM;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号