首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Efficient Mining of Frequent Patterns on Uncertain Graphs
【24h】

Efficient Mining of Frequent Patterns on Uncertain Graphs

机译:不确定图上频繁模式的有效挖掘

获取原文
获取原文并翻译 | 示例

摘要

Uncertainty is intrinsic to a wide spectrum of real-life applications, which inevitably applies to graph data. Representative uncertain graphs are seen in bio-informatics, social networks, etc. This paper motivates the problemNof frequent subgraphmining on single uncertain graphs, and investigates two different - probabilistic and expected - semantics in terms of support definitions. First, we present an enumeration-evaluation algorithmto solve the problemunder probabilistic semantics. By showing the support computation under probabilistic semantics is #P-complete, we develop an approximation algorithm-with accuracy guarantee for efficient problem-solving. To enhance the solution, we devise computation sharing techniques to achieve better mining performance. Afterwards, the algorithmis extended in a similar flavor to handle the problemunder expected semantics, where checkpoint-based pruning and validation techniques are integrated. Experiment results on real-life datasets confirm the practical usability of the mining algorithms.
机译:不确定性是现实生活中各种应用程序固有的,不可避免地适用于图形数据。在生物信息学,社交网络等中可以看到代表性的不确定图。本文提出了在单个不确定图上频繁进行细分的问题,并从支持定义的角度研究了两种语义(概率和预期)。首先,我们提出一种枚举评估算法来解决概率语义下的问题。通过证明概率语义下的支持计算是#P-complete,我们开发了一种具有精确度保证的近似算法,可以高效地解决问题。为了增强解决方案,我们设计了计算共享技术以实现更好的挖掘性能。之后,该算法以类似的方式扩展,以在预期的语义下处理该问题,其中集成了基于检查点的修剪和验证技术。在真实数据集上的实验结果证实了挖掘算法的实际可用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号