首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Privacy-Preserving Social Media Data Publishing for Personalized Ranking-Based Recommendation
【24h】

Privacy-Preserving Social Media Data Publishing for Personalized Ranking-Based Recommendation

机译:隐私保护的社交媒体数据发布,用于个性化基于排名的推荐

获取原文
获取原文并翻译 | 示例

摘要

Personalized recommendation is crucial to help users find pertinent information. It often relies on a large collection of user data, in particular users' online activity (e.g., tagging/rating/checking-in) on social media, to mine user preference. However, releasing such user activity data makes users vulnerable to inference attacks, as private data (e.g., gender) can often be inferred from the users' activity data. In this paper, we proposed PrivRank, a customizable and continuous privacy-preserving social media data publishing framework protecting users against inference attacks while enabling personalized ranking-based recommendations. Its key idea is to continuously obfuscate user activity data such that the privacy leakage of user-specified private data is minimized under a given data distortion budget, which bounds the ranking loss incurred from the data obfuscation process in order to preserve the utility of the data for enabling recommendations. An empirical evaluation on both synthetic and real-world datasets shows that our framework can efficiently provide effective and continuous protection of user-specified private data, while still preserving the utility of the obfuscated data for personalized ranking-based recommendation. Compared to state-of-the-art approaches, PrivRank achieves both a better privacy protection and a higher utility in all the ranking-based recommendation use cases we tested.
机译:个性化推荐对于帮助用户找到相关信息至关重要。它通常依赖于大量用户数据,尤其是用户在社交媒体上的在线活动(例如,标记/评分/签到),以挖掘用户的偏好。但是,发布此类用户活动数据会使用户容易受到推理攻击,因为通常可以从用户的活动数据中推断出私人数据(例如性别)。在本文中,我们提出了PrivRank,这是一种可自定义的连续性隐私保护社交媒体数据发布框架,可保护用户免受推理攻击,同时启用基于个性化排名的建议。它的关键思想是连续混淆用户活动数据,以便在给定的数据失真预算下将用户指定的私有数据的隐私泄漏最小化,这限制了因数据混淆过程而导致的排名损失,从而保留了数据的效用用于启用建议。对合成数据集和真实数据集的经验评估表明,我们的框架可以有效地,持续地保护用户指定的私人数据,同时仍保留混淆数据用于基于个性化排名的推荐的效用。与最新方法相比,PrivRank在我们测试的所有基于排名的推荐用例中都实现了更好的隐私保护和更高的实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号