首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Inferring Higher-Order Structure Statistics of Large Networks from Sampled Edges
【24h】

Inferring Higher-Order Structure Statistics of Large Networks from Sampled Edges

机译:从采样边缘推断大型网络的高阶结构统计

获取原文
获取原文并翻译 | 示例

摘要

Recently exploring locally connected subgraphs (also known as motifs or graphlets) of complex networks attracts a lot of attention. Previous work made the strong assumption that the graph topology of interest is known in advance. In practice, sometimes researchers have to deal with the situation where the graph topology is unknown because it is expensive to collect and store all topological information. Hence, typically what is available to researchers is only a snapshot of the graph, i.e., a subgraph of the graph. Crawling methods such as breadth first sampling can be used to generate the snapshot. However, these methods fail to sample a streaming graph represented as a high speed stream of edges. Therefore, graph mining applications such as network traffic monitoring usually use random edge sampling (i.e., sample each edge with a fixed probability) to collect edges and generate a sampled graph, which we call a “RESampled graph”. Clearly, a RESampled graph's motif statistics may be quite different from those of the original graph. To resolve this, we propose a framework Minfer, which takes the given RESampled graph and accurately infers the underlying graph's motif statistics. Experiments using large scale datasets show the accuracy and efficiency of our method.
机译:最近,探索复杂网络的本地连接子图(也称为主题或图小图)引起了很多关注。先前的工作有一个很强的假设,即预先知道了感兴趣的图拓扑。在实践中,有时研究人员必须处理图形拓扑未知的情况,因为收集和存储所有拓扑信息的成本很高。因此,研究人员通常只能使用图的快照,即图的子图。可以使用诸如广度优先采样之类的爬网方法来生成快照。但是,这些方法无法对表示为高速边流的流图进行采样。因此,诸如网络流量监控之类的图挖掘应用程序通常使用随机边缘采样(即,以固定概率对每个边缘进行采样)来收集边缘并生成采样图,我们称之为“ n <斜体xmlns:mml = ” http://www.w3.org/1998/Math/MathML “ xmlns:xlink = ” http://www.w3.org/1999/xlink “>重新采样图 n”。显然,重新采样图的主题统计可能与原始图完全不同。为解决此问题,我们提出了一个Minfer框架,该框架采用给定的RESampled图并准确地推断基础图的主题统计信息。使用大规模数据集进行的实验证明了我们方法的准确性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号