首页> 外文期刊>IEEE Transactions on Intelligent Vehicles >Pushing the “Speed Limit”: High-Accuracy US Traffic Sign Recognition With Convolutional Neural Networks
【24h】

Pushing the “Speed Limit”: High-Accuracy US Traffic Sign Recognition With Convolutional Neural Networks

机译:推动“限速”:卷积神经网络的高精度美国交通标志识别

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel convolutional neural network (CNN)-based traffic sign recognition system and investigates pre- and post-processing methods for enhancing performance. We focus on speed limit signs, the most difficult superclass in the US traffic sign set. The Cuda-convnet is chosen as a suitable model for the traffic sign recognition task with low-resolution training images and limited dataset size. We test on the world's largest public dataset of US traffic signs, the LISA-TS extension, and testing dataset. Compared with the current state-of-the-art aggregated channel features detector that has achieved near-perfect detection accuracy except for US speed limit signs, our approach improves the area under precision-recall curve (AUC) of the speed limit sign detection by more than 5%. We also discuss potential improvements of the CNN-based traffic sign recognition method.
机译:本文提出了一种基于卷积神经网络(CNN)的新型交通标志识别系统,并研究了可提高性能的预处理和后处理方法。我们专注于限速标志,这是美国交通标志中最困难的超类。选择Cuda-convnet作为具有低分辨率训练图像和有限数据集大小的交通标志识别任务的合适模型。我们对世界上最大的美国交通标志,LISA-TS扩展名和测试数据集进行了测试。与目前除美国限速标志外已达到近乎完美的检测精度的最新聚合通道特征检测器相比,我们的方法通过以下方法改善了限速标志检测的精确召回曲线(AUC)下的面积:超过5%。我们还将讨论基于CNN的交通标志识别方法的潜在改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号