首页> 外文期刊>IEEE Transactions on Information Theory >A unified approach for encoding clean and noisy sources by means of waveform and autoregressive model vector quantization
【24h】

A unified approach for encoding clean and noisy sources by means of waveform and autoregressive model vector quantization

机译:通过波形和自回归模型矢量量化对纯净噪声源进行编码的统一方法

获取原文
获取原文并翻译 | 示例

摘要

Data compression by vector quantization is considered for sources which have been degraded by noise. It is shown that, by appropriately modifying the given distortion measure, the problem becomes a standard quantization problem for the noisy source and the modified distortion measure. For the special case of sources corrupted by statistically independent additive noise, the authors provide sufficient conditions on the original distortion measure and probability distributions of the source and the noise for convergence of the generalized Lloyd algorithm in designing the quantizers. The results are specialized to waveform and autoregressive model vector quantization using the weighted quadratic and the Itakura-Saito distortion measures, respectively.
机译:对于由于噪声而退化的信号源,考虑采用矢量量化进行数据压缩。示出了,通过适当地修改给定的失真度量,该问题成为对于噪声源和修改的失真度量的标准量化问题。对于由统计独立的加性噪声​​破坏的源的特殊情况,作者为量化设计中的广义Lloyd算法的收敛提供了原始失真测度,源和噪声的概率分布的充分条件。结果分别专用于使用加权二次和Itakura-Saito失真度量的波形和自回归模型矢量量化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号