首页> 外文期刊>IEEE Transactions on Information Theory >Global convergence of the recursive kernel regression estimates with applications in classification and nonlinear system estimation
【24h】

Global convergence of the recursive kernel regression estimates with applications in classification and nonlinear system estimation

机译:递归核回归估计的全局收敛性及其在分类和非线性系统估计中的应用

获取原文
获取原文并翻译 | 示例

摘要

An improved exponential bound on the L/sub 1/ error for the recursive kernel regression estimates is derived. It is shown, using the martingale device, that weak, strong and complete L/sub 1/ consistencies are equivalent. Consequently the conditions on a certain smoothing sequence are necessary and sufficient for strong L/sub 1/ consistency of the recursive kernel regression estimate. The rates of global convergence are also given. Obtained results are applied to recursive classification rules and to nonlinear time series estimation.
机译:得出了递归核回归估计的L / sub 1 /误差的改进指数界。使用the装置显示,弱,强和完整的L / sub 1 /一致性是等效的。因此,一定的平滑序列上的条件对于递归核回归估计的强L / sub 1 /一致性是必要和充分的。还给出了全球收敛速度。获得的结果将应用于递归分类规则和非线性时间序列估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号