首页> 外文期刊>IEEE Transactions on Information Theory >On optimal shaping of multidimensional constellations
【24h】

On optimal shaping of multidimensional constellations

机译:关于多维星座的最佳成形

获取原文
获取原文并翻译 | 示例

摘要

A scheme for the optimal shaping of multidimensional constellations is proposed. This scheme is motivated by a type of structured vector quantizer for memoryless sources, and results in N-sphere shaping of N-dimensional cubic lattice-based constellations. Because N-sphere shaping is optimal in N dimensions, shaping gains higher than those of N-dimensional Voronoi constellations can be realized. While optimal shaping for a large N can realize most of the 1.53 dB total shaping gain, it has the undesirable effect of increasing the size and the peak-to-average power ratio of the constituent 2D constellation. This limits its usefulness for many real world channels which have nonlinearities. The proposed scheme alleviates this problem by achieving optimal constellation shapes for a given limit on the constellation expansion ratio or the peak-to-average power ratio of the constituent 2D constellation. Results of Calderbank and Ozarow (1990) on nonequiprobable signaling are used to reduce the complexity of this scheme and make it independent of the data rate with essentially no effect on the shaping gain. Comparisons with Forney's (1989) trellis shaping scheme are also provided.
机译:提出了一种最佳构形的多维星座方案。此方案是由一种用于无记忆源的结构化矢量量化器激发的,并导致对N维立方晶格为基础的星座进行N球整形。由于N球整形在N维上最佳,因此可以实现比N维Voronoi星座更高的整形增益。尽管针对大N的最佳整形可以实现1.53 dB的大部分整形增益,但它具有增加2D星座图的大小和峰均功率比的不良效果。这限制了它对许多具有非线性的现实世界通道的有用性。所提出的方案通过针对组成二维星座图的星座图扩展比或峰均功率比的给定限制实现最佳星座图形状来缓解此问题。 Calderbank和Ozarow(1990)关于非等概率信令的结果用于降低该方案的复杂性,并使它独立于数据速率而对成形增益基本没有影响。还提供了与Forney(1989)网格成形方案的比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号