首页> 外文期刊>IEEE Transactions on Information Theory >Trellis-oriented decomposition and trellis complexity of composite-length cyclic codes
【24h】

Trellis-oriented decomposition and trellis complexity of composite-length cyclic codes

机译:复合长度循环码的面向网格的分解和网格复杂度

获取原文
获取原文并翻译 | 示例

摘要

The trellis complexity of composite-length cyclic codes (CLCC's) is addressed. We first investigate the trellis properties of concatenated and product codes in general. Known factoring of CLCC's into concatenated subcodes is thereby employed to derive upper bounds on the minimal trellis size and state-space profile. New decomposition of CLCC's into product subcodes is established and utilized to derive further upper hounds on the trellis parameters. The coordinate permutations that correspond to these bounds are exhibited. Additionally, new results on the generalized Hamming weights of CLCC's are obtained. The reduction in trellis complexity of many CLCC's leads to soft-decision decoders with relatively low complexity.
机译:解决了复合长度循环码(CLCC)的网格复杂性。首先,我们通常首先调查级联和产品代码的网格属性。因此,将CLCC分解为级联子代码的已知因数可用于得出最小网格大小和状态空间轮廓的上限。建立了将CLCC分解为产品子代码的新方法,并将其用于推导网格参数上的其他上限。显示了与这些边界相对应的坐标排列。另外,获得了关于CLCC的广义汉明权重的新结果。许多CLCC的网格复杂度的降低导致软判决解码器具有相对低的复杂度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号