首页> 外文期刊>IEEE Transactions on Information Theory >On the second generalized Hamming weight of the dual code of a double-error-correcting binary BCH code
【24h】

On the second generalized Hamming weight of the dual code of a double-error-correcting binary BCH code

机译:关于双纠错二进制BCH码对偶码的第二次广义汉明权重

获取原文
获取原文并翻译 | 示例

摘要

The generalized Hamming weight of a linear code is a new notion of higher dimensional Hamming weights. Let C be an [n,k] linear code and D be a subcode. The support of D is the cardinality of the set of not-always-zero bit positions of D. The rth generalized Hamming weight of C, denoted by d/sub r/(C), is defined as the minimum support of an r-dimensional subcode of C. It was shown by Wei (1991) that the generalized Hamming weight hierarchy of a linear code completely characterizes the performance of the code on the type II wire-tap channel defined by Ozarow and Wyner (1984). In the present paper the second generalized Hamming weight of the dual code of a double-error-correcting BCH code is derived and the authors prove that except for m=4, the second generalized Hamming weight of [2/sup m/-1, 2m]-dual BCH codes achieves the Griesmer bound.
机译:线性代码的广义汉明权重是高维汉明权重的新概念。令C为[n,k]线性码,D为子码。 D的支持度是D的非零位位置集合的基数。C的第r个广义汉明权重,由d / sub r /(C)表示,定义为r-的最小支持度。 Wei(1991)表明,线性码的广义汉明权重层次结构完全表征了Ozarow和Wyner(1984)定义的II型窃听通道上的代码性能。本文推导了双纠错BCH码对偶码的第二广义汉明权重,作者证明除了m = 4之外,第二广义汉明权重[2 / sup m / -1, 2m]-双BCH码达到了格里斯默边界。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号