The problem of asymptotic (i,e., low-distortion) behavior of the rate-distortion function of a random vector is investigated for a class of non-difference distortion measures. The main result is an asymptotically tight expression which parallels the Shannon lower bound for difference distortion measures. For example, for an input-weighted squared error distortion measure d(x,y)=/spl par/W(x)(y-x)/spl par//sup 2/,y,x/spl isin/R/sup n/, the asymptotic expression for the rate-distortion function of X/spl isin/R/sup n/ at distortion level D equals h(X)-/sub 2///sup n/log(2/spl pi/eD)+Elog|detW(X)| where h(X) is the differential entropy of X. Extensions to stationary sources and to high-resolution remote ("noisy") source coding are also given.
展开▼
机译:针对一类非差分失真测度,研究了随机向量的速率失真函数的渐近(即低失真)行为问题。主要结果是一个渐近紧表达式,它与差值失真度量的香农下限相似。例如,对于输入加权平方误差失真量度d(x,y)= / spl par / W(x)(yx)/ spl par // sup 2 /,y,x / spl isin / R / sup n /,在失真级别D时,X / spl的速率失真函数isin / R / sup n /的渐近表达式等于h(X)-/ sub 2 /// sup n / log(2 / spl pi / eD / n)+ Elog | detW(X)|其中h(X)是X的微分熵。还给出了对固定源和高分辨率远程(“噪声”)源编码的扩展。
展开▼