首页> 外文期刊>IEEE Transactions on Information Theory >Closest point search in lattices
【24h】

Closest point search in lattices

机译:点阵中的最近点搜索

获取原文

摘要

In this semitutorial paper, a comprehensive survey of closest point search methods for lattices without a regular structure is presented. The existing search strategies are described in a unified framework, and differences between them are elucidated. An efficient closest point search algorithm, based on the Schnorr-Euchner (1995) variation of the Pohst (1981) method, is implemented. Given an arbitrary point x /spl isin/ /spl Ropf//sup m/ and a generator matrix for a lattice /spl Lambda/, the algorithm computes the point of /spl Lambda/ that is closest to x. The algorithm is shown to be substantially faster than other known methods, by means of a theoretical comparison with the Kannan (1983, 1987) algorithm and an experimental comparison with the Pohst (1981) algorithm and its variants, such as the Viterbo-Boutros (see ibid. vol.45, p.1639-42, 1999) decoder. Modifications of the algorithm are developed to solve a number of related search problems for lattices, such as finding a shortest vector, determining the kissing number, computing the Voronoi (1908)-relevant vectors, and finding a Korkine-Zolotareff (1873) reduced basis.
机译:在这篇指导性论文中,对没有规则结构的晶格的最近点搜索方法进行了全面概述。现有的搜索策略在统一的框架中进行描述,并阐明它们之间的差异。基于Pohst(1981)方法的Schnorr-Euchner(1995)变体,实现了一种有效的最近点搜索算法。给定任意点x / spl isin / / spf Ropf // sup m /和晶格/ spl Lambda /的生成矩阵,该算法将计算/ spl Lambda /最接近x的点。通过与Kannan(1983,1987)算法的理论比较以及与Pohst(1981)算法及其变体(例如Viterbo-Boutros(参见同上,第45卷,第1639-42页,1999年)解码器。开发了该算法的修改形式,以解决晶格的许多相关搜索问题,例如找到最短向量,确定接吻数,计算与Voronoi(1908)相关的向量,以及找到Korkine-Zolotareff(1873)的缩减基。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号