首页> 外文期刊>IEEE Transactions on Information Theory >Mean-squared error and threshold SNR prediction of maximum-likelihood signal parameter estimation with estimated colored noise covariances
【24h】

Mean-squared error and threshold SNR prediction of maximum-likelihood signal parameter estimation with estimated colored noise covariances

机译:估计色噪声协方差的最大似然信号参数估计的均方误差和阈值SNR预测

获取原文
获取原文并翻译 | 示例

摘要

An interval error-based method (MIE) of predicting mean squared error (MSE) performance of maximum-likelihood estimators (MLEs) is extended to the case of signal parameter estimation requiring intermediate estimation of an unknown colored noise covariance matrix; an intermediate step central to adaptive array detection and parameter estimation. The successful application of MIE requires good approximations of two quantities: 1) interval error probabilities and 2) asymptotic (SNR/spl rarr//spl infin/) local MSE performance of the MLE. Exact general expressions for the pairwise error probabilities that include the effects of signal model mismatch are derived herein, that in conjunction with the Union Bound provide accurate prediction of the required interval error probabilities. The Crame/spl acute/r-Rao Bound (CRB) often provides adequate prediction of the asymptotic local MSE performance of MLE. The signal parameters, however, are decoupled from the colored noise parameters in the Fisher Information Matrix for the deterministic signal model, rendering the CRB incapable of reflecting loss due to colored noise covariance estimation. A new modification of the CRB involving a complex central beta random variable different from, but analogous to the Reed, Mallett, and Brennan beta loss factor provides a working solution to this problem, facilitating MSE prediction well into the threshold region with remarkable accuracy.
机译:预测最大似然估计器(MLE)均方误差(MSE)性能的基于间隔误差的方法(MIE)扩展到信号参数估计的情况,需要中间估计未知色噪声协方差矩阵;自适应阵列检测和参数估计的核心中间步骤。 MIE的成功应用需要两个数量的良好近似值:1)区间误差概率和2)MLE的渐近(SNR / spl rarr // spl infin /)局部MSE性能。本文推导了包括信号模型失配的影响的成对错误概率的精确通用表达式,该表达式与联合约束一起提供了所需间隔误差概率的准确预测。 Crame / spl急性/ r-Rao结合(CRB)通常可以为MLE的渐近局部MSE性能提供足够的预测。但是,对于确定性信号模型,信号参数与Fisher信息矩阵中的有色噪声参数解耦,从而使CRB无法反映由于有色噪声协方差估计而引起的反射损耗。对CRB的新修改涉及与Reed,Mallett和Brennan beta损失因子不同但又相似的复杂中央beta随机变量,为该问题提供了可行的解决方案,从而使MSE预测以明显的精度很好地进入了阈值区域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号