首页> 外文期刊>IEEE Transactions on Information Theory >Monotonic Decrease of the Non-Gaussianness of the Sum of Independent Random Variables: A Simple Proof
【24h】

Monotonic Decrease of the Non-Gaussianness of the Sum of Independent Random Variables: A Simple Proof

机译:独立随机变量和的非高斯性的单调递减:一个简单的证明

获取原文
获取原文并翻译 | 示例

摘要

Artstein, Ball, Barthe, and Naor have recently shown that the non-Gaussianness (divergence with respect to a Gaussian random variable with identical first and second moments) of the sum of independent and identically distributed (i.i.d.) random variables is monotonically nonincreasing. We give a simplified proof using the relationship between non-Gaussianness and minimum mean-square error (MMSE) in Gaussian channels. As Artstein , we also deal with the more general setting of nonidentically distributed random variables.
机译:Artstein,Ball,Barthe和Naor最近表明,独立且均匀分布(即i)的随机变量之和的非高斯性(相对于具有相同的一阶和二阶矩的高斯随机变量的散度)是单调递增的。我们使用高斯信道中非高斯性和最小均方误差(MMSE)之间的关系给出简化的证明。作为Artstein,我们还处理非常规分布的随机变量的更一般设置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号