首页> 外文期刊>IEEE Transactions on Information Theory >The Bare Bounded-Storage Model: The Tight Bound on the Storage Requirement for Key Agreement
【24h】

The Bare Bounded-Storage Model: The Tight Bound on the Storage Requirement for Key Agreement

机译:裸边界存储模型:密钥协议的存储需求的严格约束

获取原文
获取原文并翻译 | 示例

摘要

In the bounded-storage model (BSM) for information-theoretic secure encryption and key agreement, one makes use of a random string $R$ whose length $t$ is greater than the assumed bound $s$ on the adversary Eve''s storage capacity. The legitimate parties, Alice and Bob, execute a protocol, over an authenticated channel accessible to Eve, to generate a secret key $K$ about which Eve has essentially no information even if she has infinite computing power. The string $R$ is either assumed to be accessible to all parties or communicated publicly from Alice to Bob. While in the BSM one often assumes that Alice and Bob initially share a short secret key, and the goal of the protocol is to generate a much longer key, in this communication, we consider the bare BSM without any initially shared secret key. It is proved that in the bare BSM, secret key agreement is impossible unless Alice and Bob have themselves very high storage capacity, namely, $O(sqrt {t})$ . This proves the optimality of a scheme proposed by Cachin and Maurer.
机译:在信息理论上的安全加密和密钥协商的有界存储模型(BSM)中,人们利用了一个随机字符串$ R $,该字符串的长度$ t $大于对手Eve的假定绑定$ s $。存储容量。合法方Alice和Bob在Eve可以访问的经过身份验证的通道上执行协议,以生成一个秘密密钥$ K $,即使Eve具有无限的计算能力,该密钥也基本上没有任何信息。假定字符串$ R $可供所有各方访问,或者从Alice公开发送给Bob。虽然在BSM中通常会假设Alice和Bob最初共享一个短密钥,并且协议的目标是生成更长的密钥,但是在这种通信中,我们认为裸BSM没有任何初始共享的密钥。事实证明,在裸BSM中,除非Alice和Bob拥有很高的存储容量$ O(sqrt {t})$,否则不可能达成秘密密钥协议。这证明了Cachin和Maurer提出的方案的最优性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号