首页> 外文期刊>Information Theory, IEEE Transactions on >On Randomized Linear Network Codes and Their Error Correction Capabilities
【24h】

On Randomized Linear Network Codes and Their Error Correction Capabilities

机译:随机线性网络码及其纠错能力

获取原文
获取原文并翻译 | 示例

摘要

Randomized linear network code for single source multicast was introduced and analyzed in Ho et al. (IEEE Transactions on Information Theory, October 2006) where the main results are upper bounds for the failure probability of the code. In this paper, these bounds are improved and tightness of the new bounds is studied by analyzing the limiting behavior of the failure probability as the field size goes to infinity. In the linear random coding setting for single source multicast, the minimum distance of the code defined in Zhang, (IEEE Transactions on Information Theory, January 2008) is a random variable taking nonnegative integer values that satisfy the inequality in the Singleton bound recently established in Yeung and Cai (Communications in Information and Systems, 2006) for network error correction codes. We derive a bound on the probability mass function of the minimum distance of the random linear network code based on our improved upper bounds for the failure probability. Codes having the highest possible minimum distance in the Singleton bound are called maximum distance separable (MDS). The bound on the field size required for the existence of MDS codes reported in Zhang, (IEEE Transactions on Information Theory, January 2008) and Matsumoto (arXiv:cs.IT/0610121, Oct. 2006) suggests that such codes exist only when field size is large. Define the degradation of a code as the difference between the highest possible minimum distance in the Singleton bound and the actual minimum distance of the code. The bound for the probability mass function of the minimum distance leads to a bound on the field size required for the existence of network error correction codes with a given maximum degradation. The result shows that allowing minor degradation reduces the field size required dramatically.
机译:Ho等人介绍并分析了用于单源多播的随机线性网络代码。 (IEEE信息理论交易,2006年10月),其中主要结果是代码失败概率的上限。在本文中,这些边界得到了改善,并且通过分析随着场大小达到无穷大时失效概率的限制行为,研究了新边界的紧密性。在单源多播的线性随机编码设置中,Zhang中定义的代码的最小距离(信息理论的IEEE Transactions,2008年1月)是一个随机变量,它采用满足在最近建立的Singleton界中不等式的非负整数值。 Yeung和Cai(信息和系统通信,2006年)中的网络错误纠正代码。基于改进的故障概率上限,我们得出了随机线性网络代码最小距离的概率质量函数的界限。在Singleton范围内具有最大可能最小距离的代码称为最大距离可分离(MDS)。在Zhang(IEEE信息理论交易,2008年1月)和Matsumoto(arXiv:cs.IT/0610121,2006年10月)中报告的存在MDS代码所需的字段大小界限表明,此类代码仅在字段存在时存在尺寸很大。将代码的降级定义为Singleton边界中最大可能的最小距离与代码的实际最小距离之差。最小距离的概率质量函数的界限导致存在具有给定的最大降级的网络纠错码所需的字段大小的界限。结果表明,允许较小的退化会大大减小所需的字段大小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号