首页> 外文期刊>Information Theory, IEEE Transactions on >On Optimal Quasi-Orthogonal Space–Time Block Codes With Minimum Decoding Complexity
【24h】

On Optimal Quasi-Orthogonal Space–Time Block Codes With Minimum Decoding Complexity

机译:具有最小解码复杂度的最佳准正交空时分组码

获取原文
获取原文并翻译 | 示例

摘要

Orthogonal space–time block codes (OSTBC) from orthogonal designs have both advantages of complex symbol-wise maximum-likelihood (ML) decoding and full diversity. However, their symbol rates are upper bounded by 3/4 for more than two antennas for complex symbols. To increase the symbol rates, they have been generalized to quasi-orthogonal space–time block codes (QOSTBC) in the literature but the diversity order is reduced by half and the complex symbol-wise ML decoding is significantly increased to complex symbol pair-wise (pair of complex symbols) ML decoding. The QOSTBC has been modified by rotating half of the complex symbols for achieving the full diversity while maintaining the complex symbol pair-wise ML decoding. The optimal rotation angles for any signal constellation of any finite symbols located on both square lattices and equal-literal triangular lattices have been found by Su-Xia, where the optimality means the optimal diversity product (or product distance). QOSTBC has also been modified by Yuen–Guan–Tjhung by rotating information symbols in another way such that it has full diversity and in the meantime it has real symbol pair-wise ML decoding (the same complexity as complex symbol-wise decoding) and the optimal rotation angle for square and rectangular QAM constellations has been found. In this paper, we systematically study general linear transformations of information symbols for QOSTBC to have both full diversity and real symbol pair-wise ML decoding. We present the optimal transformation matrices (among all possible linear transformations not necessarily symbol rotations) of information symbols for QOSTBC with real symbol pair-wise ML decoding such that the optimal diversity product is achieved for both general square QAM and general rectangular QAM signal constellations. Furthermore, our newly proposed optimal linear transf-n-normations for QOSTBC also work for general QAM constellations in the sense that QOSTBC have full diversity with good diversity product property and real symbol pair-wise ML decoding. Interestingly, the optimal diversity products for square QAM constellations from the optimal linear transformations of information symbols found in this paper coincide with the ones presented by Yuen–Guan–Tjhung by using their optimal rotations. However, the optimal diversity products for (nonsquare) rectangular QAM constellations from the optimal linear transformations of information symbols found in this paper are better than the ones presented by Yuen–Guan–Tjhung by using their optimal rotations. In this paper, we also present the optimal transformations for the co-ordinate interleaved orthogonal designs (CIOD) proposed by Khan-Rajan for rectangular QAM constellations.
机译:正交设计的正交空时分组码(OSTBC)具有复杂的按符号最大似然(ML)解码和完全分集的优点。但是,对于两个以上的复杂符号天线,其符号率上限为3/4。为了提高符号率,在文献中将它们推广到准正交空时分组码(QOSTBC),但是将分集阶数减少了一半,并且将复杂的逐个符号ML解码显着提高为逐个复杂的符号(一对复杂符号)ML解码。通过旋转一半的复数符号来修改QOSTBC,以实现完全分集,同时保持复数符号成对ML解码。 Su-Xia已找到了位于正方形格子和等文字三角形格子上的任何有限符号的任何信号星座图的最佳旋转角,其中,最优性表示最优分集乘积(或乘积距离)。 QOSTBC还由Yuen–Guan–Tjhung进行了修改,以另一种方式旋转信息符号,使其具有完全的分集性,与此同时,它还具有真实的符号对ML解码(与复杂的符号对解码相同的复杂度)和已经发现方形和矩形QAM星座的最佳旋转角度。在本文中,我们系统地研究了QOSTBC信息符号的一般线性变换,使其具有全分集和实数符号对ML解码。我们提出了具有实数符号对ML解码的QOSTBC信息符号的最佳变换矩阵(在所有可能的线性变换中,不一定是符号旋转),这样,对于一般的方形QAM和一般的矩形QAM信号星座图都可以获得最佳的分集乘积。此外,我们新提出的针对QOSTBC的最优线性变换-n范式也适用于一般QAM星座,因为QOSTBC具有完全的分集,具有良好的分集乘积性质,并且是真正的符号对ML解码。有趣的是,本文中发现的基于信息符号的最佳线性变换的方形QAM星座图的最佳分集乘积与Yuen-Guan-Tjhung提出的最佳乘积相吻合。但是,从本文找到的信息符号的最佳线性变换获得的(非方形)矩形QAM星座图的最佳分集乘积,比使用Yuen-Guan-Tjhung提出的最佳旋转乘积更好。在本文中,我们还为Khan-Rajan提出的正交QAM星座图的坐标交错正交设计(CIOD)提供了最佳变换。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号