首页> 外文期刊>Information Theory, IEEE Transactions on >Group Codes Outperform Binary-Coset Codes on Nonbinary Symmetric Memoryless Channels
【24h】

Group Codes Outperform Binary-Coset Codes on Nonbinary Symmetric Memoryless Channels

机译:组代码在非二进制对称无内存通道上的性能优于二进制陪集代码

获取原文
获取原文并翻译 | 示例

摘要

Typical minimum distances and error exponents are analyzed on the 8-PSK Gaussian channel for two capacity- achieving code ensembles with different algebraic structure. It is proved that the typical group code over the cyclic group of order eight achieves both the Gilbert–Varshamov bound and the expurgated error exponent. On the other hand, the typical binary-coset codes (under any labeling) is shown to be bounded away both from the Gilbert–Varshamov bound (at any rate) and the expurgated exponent (at low rates). The reason for this phenomenon is shown to rely on the symmetry structure of the 8-PSK constellation, which is known to match the cyclic group of order eight, but not the direct product of three copies of the binary group. The presented results indicate that designing group codes matching the symmetry of the channel guarantees better typical-code performance than designing codes whose algebraic structure does not match the channel. This contrasts the well-known fact that the average binary-coset code achieves both the capacity and the random-coding error exponent of any discrete memoryless channel.
机译:在8-PSK高斯信道上分析了两种具有不同代数结构的可实现容量的代码集合的典型最小距离和误差指数。证明了,在八阶循环群上的典型群码既能达到吉尔伯特-瓦尔沙莫夫界,又能达到拟除错指数。另一方面,典型的二进制陪集代码(在任何标签下)都显示出与吉尔伯特-瓦尔沙莫夫界(无论如何)和乘除指数(低速率)都有界。出现这种现象的原因表明,它依赖于8-PSK星座的对称结构,已知该结构与8阶的循环基团相匹配,但与二进位基团的三个副本的直接积不匹配。给出的结果表明,设计与通道对称性匹配的组代码比设计代数结构与通道不匹配的代码可确保更好的典型代码性能。这与众所周知的事实相反,即平均二进制陪集代码同时实现了任何离散无记忆通道的容量和随机编码误差指数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号