首页> 外文期刊>Information Theory, IEEE Transactions on >New Construction of -Ary Sequence Families With Low Correlation From the Structure of Sidelnikov Sequences
【24h】

New Construction of -Ary Sequence Families With Low Correlation From the Structure of Sidelnikov Sequences

机译:Sidelnikov序列结构的低相关性-Ary序列族的新构建

获取原文
获取原文并翻译 | 示例

摘要

For prime $p$ and a positive integer $m$ , it is shown that $M$-ary Sidelnikov sequences of period $p^{2m}-1$, if $M mid p^m-1$, can be equivalently generated by the operation of elements in a finite field ${rm GF}(p^m)$, including a $p^m$-ary $m$ -sequence. From the $(p^m-1) times (p^m+1)$ array structure of the sequences, it is then found that a half of the column sequences and their constant multiples have low correlation enough to construct new $M$ -ary sequence families of period $p^m-1$. In particular, new $M$-ary sequence families of period $p^m-1$ are constructed-n-n from the combination of the column sequence families and known Sidelnikov-based sequence families, where the new families have larger family sizes than the known ones with the same maximum correlation magnitudes. Finally, it is shown that the new $M$ -ary sequence family of period $p^m-1$ and the maximum correlation magnitude $2sqrt{p^m}+6$ asymptotically achieves $sqrt{2}$ times the equality of the Sidelnikov's lower bound when $M=p^m-1$ for odd prime $p$.
机译:对于素数$ p $和一个正整数$ m $,表明如果周期$ p ^ {2m} -1 $的$ M $ -ary Sidelnikov序列,如果$ M mid p ^ m-1 $,则可以等效由元素在有限域$ {rm GF}(p ^ m)$中的运算产生,包括$ p ^ m $ ary -ary $ m $-序列。从序列的(p ^ m-1)乘以(p ^ m + 1)$的数组结构,可以发现一半的列序列及其常数倍具有足够低的相关性,足以构建新的$ M $周期$ p ^ m-1 $的一元序列族。特别是,新的$ M $元周期$ p ^ m-1 $的序列族是从列序列族和已知的基于Sidelnikov的序列族的组合中构造的nn,其中新的族比具有相同的最大相关幅度的已知对象。最后,表明新的$ M $ -ary序列族$ p ^ m-1 $和最大相关量$ 2sqrt {p ^ m} + 6 $渐近地实现$ sqrt {2} $乘以等式对于奇质数$ p $,当$ M = p ^ m-1 $时,西得尔尼科夫下限的整数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号