首页> 外文期刊>Information Theory, IEEE Transactions on >Efficient On-Line Schemes for Encoding Individual Sequences With Side Information at the Decoder
【24h】

Efficient On-Line Schemes for Encoding Individual Sequences With Side Information at the Decoder

机译:在解码器上使用边信息对单个序列进行编码的有效在线方案

获取原文
获取原文并翻译 | 示例

摘要

We present adaptive on-line schemes for lossy encoding of individual sequences, under the conditions of the Wyner-Ziv (WZ) problem. In the first part of this paper, a set of fixed-rate scalar source codes with zero delay is presented. We propose a randomized on-line coding scheme, which achieves asymptotically (and with high probability), the performance of the best source code in the set, uniformly over all source sequences. Efficient algorithms for implementing this scheme for small and large sets of encoders are presented. In the second part of this work, we generalize our results to the case of variable-rate coding. A set of variable-rate scalar source codes is presented. This time, the performance is measured by the Lagrangian Cost (LC), which is defined as a weighted sum of the distortion and the length of the encoded sequence. Efficient algorithms for implementing the generalized on-line coding scheme are presented. We then consider the special case of lossless variable-rate coding. An on-line scheme which uses Huffman codes is presented. We show that this scheme can be implemented efficiently using the same graphic methods from the first part. Finally, combining the results from former sections, we build a generalized efficient algorithm for a structured set of variable-rate encoders.
机译:在Wyner-Ziv(WZ)问题的条件下,我们提出了针对单个序列的有损编码的自适应在线方案。在本文的第一部分中,提出了一组具有零延迟的固定速率标量源代码。我们提出了一种随机的在线编码方案,该方案在所有源序列上均匀地渐近地(且具有很高的概率)实现了集合中最佳源代码的性能。提出了用于小型和大型编码器集的实现该方案的有效算法。在这项工作的第二部分,我们将结果推广到可变速率编码的情况。给出了一组可变速率标量源代码。这次,通过拉格朗日成本(LC)来衡量性能,拉格朗日成本(LC)定义为失真和编码序列长度的加权和。提出了用于实现广义在线编码方案的有效算法。然后,我们考虑无损可变速率编码的特殊情况。提出了一种使用霍夫曼码的在线方案。我们证明了该方案可以使用与第一部分相同的图形方法有效地实现。最后,结合前几部分的结果,我们为结构化的可变速率编码器集构建了一种通用的高效算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号