首页> 外文期刊>Information Theory, IEEE Transactions on >A Matrix-Theoretic Approach for Analyzing Quasi-Cyclic Low-Density Parity-Check Codes
【24h】

A Matrix-Theoretic Approach for Analyzing Quasi-Cyclic Low-Density Parity-Check Codes

机译:分析准循环低密度奇偶校验码的矩阵理论方法

获取原文
获取原文并翻译 | 示例

摘要

A matrix-theoretic approach for studying quasi-cyclic codes based on matrix transformations via Fourier transforms and row and column permutations is developed. These transformations put a parity-check matrix in the form of an array of circulant matrices into a diagonal array of matrices of the same size over an extension field. The approach is amicable to the analysis and construction of quasi-cyclic low-density parity-check codes since it takes into account the specific parity-check matrix used for decoding with iterative message-passing algorithms. Based on this approach, the dimension of the codes and parity-check matrices for the dual codes can be determined. Several algebraic and geometric constructions of quasi-cyclic codes are presented as applications along with simulation results showing their performance over additive white Gaussian noise channels decoded with iterative message-passing algorithms.
机译:提出了一种基于矩阵理论的准循环码研究方法,该方法基于通过傅立叶变换以及行和列排列的矩阵变换。这些转换将循环矩阵阵列形式的奇偶校验矩阵放入扩展字段上大小相同的对角矩阵矩阵中。该方法对准循环低密度奇偶校验码的分析和构造很友好,因为它考虑了用于迭代消息传递算法解码的特定奇偶校验矩阵。基于这种方法,可以确定代码的尺寸和对偶代码的奇偶校验矩阵。提出了几种准循环代码的代数和几何构造,以及一些仿真结果,这些仿真结果显示了它们在通过迭代消息传递算法解码的加性高斯白噪声信道上的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号