首页> 外文期刊>IEEE Transactions on Information Theory >Counting in Graph Covers: A Combinatorial Characterization of the Bethe Entropy Function
【24h】

Counting in Graph Covers: A Combinatorial Characterization of the Bethe Entropy Function

机译:图覆盖计数:Bethe熵函数的组合表征

获取原文
获取原文并翻译 | 示例

摘要

We present a combinatorial characterization of the Bethe entropy function of a factor graph, such a characterization being in contrast to the original, analytical, definition of this function. We achieve this combinatorial characterization by counting valid configurations in finite graph covers of the factor graph. Analogously, we give a combinatorial characterization of the Bethe partition function, whose original definition was also of an analytical nature. As we point out, our approach has similarities to the replica method, but also stark differences. The above findings are a natural backdrop for introducing a decoder for graph-based codes that we will call symbolwise graph-cover decoding, a decoder that extends our earlier work on blockwise graph-cover decoding. Both graph-cover decoders are theoretical tools that help toward a better understanding of message-passing iterative decoding, namely blockwise graph-cover decoding links max-product (min-sum) algorithm decoding with linear programming decoding, and symbolwise graph-cover decoding links sum-product algorithm decoding with Bethe free energy function minimization at temperature one. In contrast to the Gibbs entropy function, which is a concave function, the Bethe entropy function is in general not concave everywhere. In particular, we show that every code picked from an ensemble of regular low-density parity-check codes with minimum Hamming distance growing (with high probability) linearly with the block length has a Bethe entropy function that is convex in certain regions of its domain.
机译:我们提出了因子图的Bethe熵函数的组合特征,这种特征与该函数的原始分析定义相反。我们通过对因子图的有限图覆盖范围内的有效配置进行计数来实现这种组合特征。类似地,我们给出了Bethe分区函数的组合特征,其原始定义也具有分析性。正如我们所指出的,我们的方法与复制方法具有相似之处,但也存在明显差异。以上发现为引入基于图的代码的解码器(我们将其称为符号图覆盖解码)的自然背景,该解码器扩展了我们先前在逐块图覆盖解码方面的工作。两种图形覆盖解码器都是有助于更好地理解消息传递迭代解码的理论工具,即逐块图形覆盖解码链接具有线性编程解码的最大乘积(最小和)算法解码,以及逐条图形覆盖解码链接在温度为1时使用Bethe自由能函数最小化的求和积算法解码。与作为凹函数的吉布斯熵函数相反,贝特熵函数通常并不是处处都是凹函数。特别地,我们表明,从规则的低密度奇偶校验码的集合中选取的每个汉明距离随块长度线性增长的最小汉明距离(以高概率)线性增长,每个代码都具有Bethe熵函数,该函数在其域的某些区域是凸的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号