首页> 外文期刊>IEEE Transactions on Information Theory >Message-Passing Algorithms: Reparameterizations and Splittings
【24h】

Message-Passing Algorithms: Reparameterizations and Splittings

机译:消息传递算法:重新参数化和拆分

获取原文
获取原文并翻译 | 示例

摘要

The max-product algorithm, a local message-passing scheme that attempts to compute the most probable assignment (MAP) of a given probability distribution, has been successfully employed as a method of approximate inference for applications arising in coding theory, computer vision, and machine learning. However, the max-product algorithm is not guaranteed to converge, and if it does, it is not guaranteed to recover the MAP assignment. Alternative convergent message-passing schemes have been proposed to overcome these difficulties. This paper provides a systematic study of such message-passing algorithms that extends the known results by exhibiting new sufficient conditions for convergence to local and/or global optima, providing a combinatorial characterization of these optima based on graph covers, and describing a new convergent and correct message-passing algorithm whose derivation unifies many of the known convergent message-passing algorithms. While convergent and correct message-passing algorithms represent a step forward in the analysis of max-product style message-passing algorithms, the conditions needed to guarantee convergence to a global optimum can be too restrictive in both theory and practice. This limitation of convergent and correct message-passing schemes is characterized by graph covers and illustrated by example.
机译:最大乘积算法是一种尝试计算给定概率分布的最可能分配(MAP)的本地消息传递方案,已成功地用作对编码理论,计算机视觉和计算机应用的应用进行近似推断的方法。机器学习。但是,不能保证max-product算法收敛,如果收敛,就不能保证恢复MAP分配。已经提出了替代性的收敛消息传递方案来克服这些困难。本文提供了这种消息传递算法的系统研究,通过展示新的充分条件来收敛到局部和/或全局最优,扩展了已知结果,提供了基于图覆盖率的这些最优组合描述,并描述了一种新的收敛和正确的消息传递算法,其推导统一了许多已知的收敛消息传递算法。尽管收敛和正确的消息传递算法代表了最大产品风格消息传递算法的分析的进步,但保证收敛到全局最优所需的条件在理论和实践上都可能过于严格。收敛和正确的消息传递方案的这种局限性以图形覆盖为特征,并通过示例进行说明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号