首页> 外文期刊>IEEE Transactions on Information Theory >Restricted $p$ -Isometry Properties of Nonconvex Matrix Recovery
【24h】

Restricted $p$ -Isometry Properties of Nonconvex Matrix Recovery

机译:受限$ p $-非凸矩阵恢复的等距特性

获取原文
获取原文并翻译 | 示例

摘要

Recently, a nonconvex relaxation of low-rank matrix recovery (LMR), called the Schatten- $p$ quasi-norm minimization ($0< p< 1$), was introduced instead of the previous nuclear norm minimization in order to approximate the problem of LMR closer. In this paper, we introduce a notion of the restricted $p$-isometry constants ( $0< pleq 1$) and derive a $p$ -RIP condition for exact reconstruction of LMR via Schatten-$p$ quasi-norm minimization. In particular, we determine how many random, Gaussian measurements are needed for the $p$-RIP condition to hold with high probability, which gives a theoretical result that it needs fewer measurements with small $p$ for exact recovery via Schatten- $p$ quasi-norm minimization than when $p=1$.
机译:最近,低秩矩阵恢复(LMR)出现了非凸松弛,称为Schatten- $ p $ 准范数最小化( $ 0 <1 $ )是为了代替LMR问题而引入的,而不是先前的核规范最小化。靠近。在本文中,我们介绍了受约束的 $ p $ -等轴测常数的概念( $ 0 leq 1 $ ),并导出 $ p $ $ p $ 准范数最小化来精确重建LMR的公式> -RIP条件。特别是,我们确定需要多少随机高斯测量值才能使 $ p $ -RIP条件高概率成立,得出的理论结果是,对于较小的 $ p $ ,通过Schatten- $ p $ 准范数最小化比 $ p = 1 $

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号