首页> 外文期刊>Information Theory, IEEE Transactions on >Reliability of Erasure Coded Storage Systems: A Combinatorial-Geometric Approach
【24h】

Reliability of Erasure Coded Storage Systems: A Combinatorial-Geometric Approach

机译:擦除编码存储系统的可靠性:组合几何方法

获取原文
获取原文并翻译 | 示例

摘要

We consider the probability of data loss, or equivalently, the reliability function for an erasure coded distributed data storage system under worst case conditions. Data loss in an erasure coded system depends on probability distributions for the disk repair duration and the disk failure duration. In previous works, the data loss probability of such systems has been studied under the assumption of exponentially distributed disk failure and disk repair durations, using well-known analytic methods from the theory of Markov processes. These methods lead to an estimate of the integral of the reliability function. Here, we address the problem of directly calculating the data loss probability for general repair and failure duration distributions. A closed limiting form is developed for the probability of data loss, and it is shown that the probability of the event that a repair duration exceeds a failure duration is sufficient for characterizing the data loss probability. For the case of constant repair duration, we develop an expression for the conditional data loss probability given the number of failures experienced by a each node in a given time window. We do so by developing a geometric approach that relies on the computation of volumes of a family of polytopes that are related to the code. An exact calculation is provided, and an upper bound on the data loss probability is obtained by posing the problem as a set avoidance problem. Theoretical calculations are compared with simulation results.
机译:我们考虑了在最坏情况下的擦除编码分布式数据存储系统的数据丢失概率或等效功能。擦除编码系统中的数据丢失取决于磁盘修复持续时间和磁盘故障持续时间的概率分布。在以前的工作中,已经使用基于马尔可夫过程理论的众所周知的分析方法,在指数分布的磁盘故障和磁盘修复持续时间的假设下研究了此类系统的数据丢失概率。这些方法导致对可靠性函数积分的估计。在这里,我们解决了直接计算一般维修和故障持续时间分布的数据丢失概率的问题。对于数据丢失的概率,提出了一种封闭的限制形式,并且表明,修复持续时间超过故障持续时间的事件的概率足以表征数据丢失的概率。对于恒定修复时间的情况,我们根据给定时间窗口中每个节点经历的故障数量,针对条件数据丢失概率开发了一个表达式。我们通过开发一种几何方法来做到这一点,该方法依赖于与代码相关的一族多聚体的体积的计算。提供了精确的计算,并且通过将该问题视为集合避免问题来获得数据丢失概率的上限。将理论计算与仿真结果进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号