首页> 外文期刊>IEEE Transactions on Information Theory >Wireless Multihop Device-to-Device Caching Networks
【24h】

Wireless Multihop Device-to-Device Caching Networks

机译:无线多跳设备到设备缓存网络

获取原文
获取原文并翻译 | 示例

摘要

We consider a wireless device-to-device network, where n nodes are uniformly distributed at random over the network area. We let each node caches M files from a library of size m≥M . Each node in the network requests a file from the library independently at random, according to a popularity distribution, and is served by other nodes having the requested file in their local cache via (possibly) multihop transmissions. Under the classical “protocol model” of wireless networks, we characterize the optimal per-node capacity scaling law for a broad class of heavy-tailed popularity distributions, including Zipf distributions with exponent less than one. In the parameter regime of interest, i.e., m=o(nM) , we show that a decentralized random caching strategy with uniform probability over the library yields the optimal per-node capacity scaling of Θ(M/m−−−−−√) for heavy-tailed popularity distributions. This scaling is constant with n , thus yielding throughput scalability with the network size. Furthermore, the multihop capacity scaling can be significantly better than for the case of single-hop caching networks, for which the per-node capacity is Θ(M/m) . The multihop capacity scaling law can be further improved for a Zipf distribution with exponent larger than some threshold > 1, by using a decentralized random caching uniformly across a subset of most popular files in the library. Namely, ignoring a subset of less popular files (i.e., effectively reducing the size of the library) can significantly improve the throughput scaling while guaranteeing that all nodes will be served with high probability as n increases.
机译:我们考虑一个无线设备到设备网络,其中n个节点在网络区域内随机均匀分布。我们让每个节点从m≥M的库中缓存M个文件。网络中的每个节点都根据流行度分布随机地独立地从库中请求文件,并由其他节点通过(可能是)多跳传输在其本地缓存中具有所请求的文件。在无线网络的经典“协议模型”下,我们针对各种重尾受欢迎度分布(包括指数小于1的Zipf分布)描述了最优的每节点容量缩放定律。在感兴趣的参数方案中,即m = o(nM),我们表明在库上具有均匀概率的分散式随机缓存策略产生的最优每节点容量缩放为Θ(M / m ------√ ),以用于广受欢迎的发布。该缩放比例对于n而言是恒定的,因此可以随网络规模产生吞吐量可伸缩性。此外,多跳容量缩放可以明显优于单跳缓存网络的情况,因为单跳缓存网络的每节点容量为Θ(M / m)。通过在库中最流行文件的子集上均匀使用分散的随机缓存,可以针对指数大于某个阈值> 1的Zipf分布进一步改善多跳容量缩放定律。即,忽略不那么受欢迎的文件的子集(即,有效地减小库的大小)可以显着改善吞吐量缩放,同时保证随着n的增加,所有节点将以高概率被服务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号