首页> 外文期刊>IEEE Transactions on Information Theory >Identification Capacity of Channels With Feedback: Discontinuity Behavior, Super-Activation, and Turing Computability
【24h】

Identification Capacity of Channels With Feedback: Discontinuity Behavior, Super-Activation, and Turing Computability

机译:具有反馈的频道识别能力:不连续性行为,超级激活和图灵可计算性

获取原文
获取原文并翻译 | 示例

摘要

The problem of identification is considered, in which it is of interest for the receiver to decide only whether a certain message has been sent or not, and the identification-feedback (IDF) capacity of channels with feedback is studied. The IDF capacity is shown to be discontinuous and super-additive for both deterministic and randomized encoding. For the deterministic IDF capacity the phenomenon of super-activation occurs, which is the strongest form of super-additivity. This is the first time that super-activation is observed for discrete memoryless channels. On the other hand, for the randomized IDF capacity, super-activation is not possible. Finally, the developed theory is studied from an algorithmic point of view by using the framework of Turing computability. The problem of computing the IDF capacity on a Turing machine is connected to problems in pure mathematics and it is shown that if the IDF capacity would be Turing computable, it would provide solutions to other problems in mathematics including Goldbach's conjecture and the Riemann Hypothesis. However, it is shown that the deterministic and randomized IDF capacities are not Banach-Mazur computable. This is the weakest form of computability implying that the IDF capacity is not computable even for universal Turing machines. On the other hand, the identification capacity without feedback is Turing computable revealing the impact of the feedback: It transforms the identification capacity from being computable to non-computable.
机译:考虑识别问题,其中对接收器仅判断是否已经发送了某些消息,并且研究了具有反馈的信道的识别反馈(IDF)容量。对于确定性和随机编码,IDF容量被显示为不连续和超级添加剂。对于确定性IDF容量,发生超激活的现象,这是最强的超级添加剂形式。这是对于离散的无记忆频道,首次观察到超级激活。另一方面,对于随机IDF容量,不可能超级激活。最后,通过使用图灵计算性的框架,从算法的角度研究了开发的理论。计算图灵机上的IDF容量的问题与纯数学中的问题相连,并显示出IDF容量将是计算的,它将为数学中的其他问题提供解决方案,包括Goldbach的猜想和riemann假设。然而,结果表明,确定性和随机的IDF容量不是Banach-Mazur可计算的。这是最薄弱的可计算性,这意味着即使对于通用图灵机,IDF容量也不是可计算的。另一方面,没有反馈的识别能力是通过计算反馈的影响来提取可计算的可计算:它将识别能力转换为可计算的不可计算能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号