首页> 外文期刊>IEEE Transactions on Information Theory >Universal Weak Variable-Length Source Coding on Countably Infinite Alphabets
【24h】

Universal Weak Variable-Length Source Coding on Countably Infinite Alphabets

机译:可数无限字母上的通用弱可变长度源编码

获取原文
获取原文并翻译 | 示例

摘要

Motivated from the fact that universal source coding on countably infinite alphabets (infinity-alphabets) is not feasible, this work introduces the notion of "almost lossless source coding". Analog to the weak variable-length source coding problem studied by Han (IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1217-1226, Jul. 2000), almost lossless source coding aims at relaxing the lossless block-wise assumption to allow an average per-letter distortion that vanishes asymptotically as the block-length tends to infinity. In this setup, we show on one hand that Shannon entropy characterizes the minimum achievable rate (similarly to the case of finite alphabet sources) while on the other that almost lossless universal source coding becomes feasible for the family of finite-entropy stationary memoryless sources with infinity-alphabets. Furthermore, we study a stronger notion of almost lossless universality that demands uniform convergence of the average per-letter distortion to zero, where we establish a necessary and sufficient condition for the so-called family of "envelope distributions" to achieve it. Remarkably, this condition is the same necessary and sufficient condition needed for the existence of a strongly minimax (lossless) universal source code for the family of envelope distributions. Finally, we show that an almost lossless coding scheme offers faster rate of convergence for the (minimax) redundancy compared to the well-known information radius developed for the lossless case at the expense of tolerating a non-zero distortion that vanishes to zero as the block-length grows. This shows that even when lossless universality is feasible, an almost lossless scheme can offer different regimes on the rates of convergence of the (worst case) redundancy versus the (worst case) distortion.
机译:出于对可数的无限字母(无穷大字母)进行通用源编码的事实的激励,这项工作引入了“几乎无损的源编码”的概念。类似于Han所研究的弱可变长度源编码问题(IEEE Trans。Inf。Theory,第46卷,第4期,第1217-1226页,2000年7月),几乎无损的源编码旨在放宽无损块明智的假设是允许平均每个字母的失真随着块长度趋于无穷大而渐近消失。在这种设置中,我们一方面证明了香农熵表征了可达到的最小速率(类似于有限字母源的情况),另一方面,对于具有以下特征的有限熵平稳无记忆源族来说,几乎无损的通用源编码变得可行无限字母。此外,我们研究了更强的概念,即几乎无损的普遍性,要求将每个字母的平均失真统一收敛到零,在那里我们为所谓的“包络分布”族建立了一个必要的充分条件。值得注意的是,此条件与信封分布族的极小极大(无损)通用源代码的存在所需的条件相同。最后,我们表明,与为无损情况开发的众所周知的信息半径相比,几乎无损的编码方案为(minimax)冗余提供了更快的收敛速度,但其代价是可以容忍随时间消失为零的非零失真。块长增长。这表明,即使在无损通用性可行的情况下,几乎无损的方案也可以针对(最坏情况)冗余与(最坏情况)失真的收敛速度提供不同的机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号