首页> 外文期刊>IEEE Transactions on Information Theory >Adaptive Linear Programming Decoding of Nonbinary Linear Codes Over Prime Fields
【24h】

Adaptive Linear Programming Decoding of Nonbinary Linear Codes Over Prime Fields

机译:素数域上非二进制线性码的自适应线性规划解码

获取原文
获取原文并翻译 | 示例

摘要

In this work, we consider adaptive linear programming (ALP) decoding of linear codes over prime fields, i.e., the finite fields $mathbb F_{p}$ of size $p$ where $p$ is a prime, when used over a $p$ -ary input memoryless channel. In particular, we provide a general construction of valid inequalities (using no auxiliary variables) for the codeword polytope (or the convex hull) of the so-called constant-weight embedding of a single parity-check (SPC) code over any prime field. The construction is based on sets of vectors, called building block classes, that are assembled to form the left-hand side of an inequality according to several rules. In the case of almost doubly-symmetric valid classes we prove that the resulting inequalities are all facet-defining, while we conjecture this to be true if and only if the class is valid and symmetric. Valid symmetric classes impose certain symmetry conditions on the elements of the vectors from the class, while valid doubly-symmetric classes impose further technical symmetry conditions. For $p=3$ , there is only a single valid symmetric class and we prove that the resulting inequalities together with the so-called simplex constraints give a complete and irredundant description of the codeword polytope of the embedded SPC code. For $p > 5$ , we show that there are additional facets beyond those from the proposed construction. As an example, for $p=7$ , we provide additional inequalities that all define facets of the embedded codeword polytope. The resulting overall set of linear (in)equalities is conjectured to be irredundant and complete. Such sets of linear (in)equalities have not appeared in the literature before, have a strong theoretical interest, and we use them to develop an efficient (relaxed) ALP decoder for general (non-SPC) linear codes over prime fields. The key ingredient is an efficient separation algorithm based on the principle of dynamic programming. Furthermore, we construct a decoder for linear codes over arbitrary fields $mathbb F_{q}$ with $q =p{m}$ and $m>1$ by a factor graph representation that reduces to several instances of the case $m=1$ , which results, in general, in a relaxation of the original decoding polytope. Finally, we present an efficient cut-generating algorithm to search for redundant parity-checks to further improve the performance towards maximum-likelihood decoding for short-to-medium block lengths. Numerical experiments confirm that our new decoder is very efficient compared to a static LP decoder for various field sizes, check-node degrees, and block lengths.
机译:在这项工作中,我们考虑对素数字段(即,大小为$ p $的有限字段$ mathbb F_ {p} $)进行自适应线性编程(ALP)解码,其中$ p $用于素数。 $ p $ -ary输入无内存通道。特别是,我们提供了在任何素数字段上所谓的单校验(SPC)代码的恒重嵌入的码字多面体(或凸包)的有效不等式(不使用辅助变量)的一般构造。 。该构造基于称为构建块类的向量集,这些向量根据若干规则组装成不等式的左侧。在几乎双重对称的有效类的情况下,我们证明了所产生的不等式都是由方面定义的,而我们仅在且仅当该类是有效且对称的情况下才认为这是成立的。有效的对称类对来自该类的向量的元素施加某些对称性条件,而有效的双对称类对其他技术对称性条件施加强加。对于$ p = 3 $,只有一个有效的对称类,并且我们证明所得的不等式以及所谓的单纯形约束给出了嵌入式SPC代码的码字多态性的完整且多余的描述。对于$ p> 5 $,我们表明除了提议的构造之外,还有其他方面。例如,对于$ p = 7 $,我们提供了其他不等式,这些不等式都定义了嵌入式码字多面体的各个方面。所得出的线性(不等式)的整体集合被认为是多余的和完整的。这样的线性(不)等式集在文献中从未出现过,具有很强的理论价值,我们使用它们来开发有效的(松弛的)ALP解码器,用于质数域上的常规(非SPC)线性代码。关键要素是基于动态编程原理的有效分离算法。此外,我们构造了一个用于在任意域$ mathbb F_ {q} $上线性编码的解码器,其中$ q = p {m} $且$ m> 1 $由因子图表示形式简化为案例$ m的多个实例= 1 $,通常会导致原始解码多态性的松弛。最后,我们提出了一种有效的剪切生成算法,以搜索冗余的奇偶校验,以进一步提高针对中短块长度的最大似然解码的性能。数值实验证实,与静态LP解码器相比,我们的新解码器在各种字段大小,校验节点度和块长度方面都非常有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号