首页> 外文期刊>IEEE Transactions on Information Theory >Refined Asymptotics for Rate-Distortion Using Gaussian Codebooks for Arbitrary Sources
【24h】

Refined Asymptotics for Rate-Distortion Using Gaussian Codebooks for Arbitrary Sources

机译:使用高斯码本对任意信号源进行速率失真的精细渐近

获取原文
获取原文并翻译 | 示例

摘要

The rate-distortion saddle-point problem considered by Lapidoth (1997) consists in finding the minimum rate to compress an arbitrary ergodic source when one is constrained to use a random Gaussian codebook and minimum (Euclidean) distance encoding is employed. We extend Lapidoth's analysis in several directions in this paper. First, we consider refined asymptotics. In particular, when the source is stationary and memoryless, we establish the second-order, moderate, and large deviation asymptotics of the problem. Second, by random Gaussian codebook, Lapidoth referred to a collection of random codewords, each of which is drawn independently and uniformly from the surface of an n-dimensional sphere. To be more precise, we term this as a spherical codebook. We also consider i.i.d. Gaussian codebooks in which each random codeword is drawn independently from a product Gaussian distribution. We derive the second-order, moderate, and large deviation asymptotics when i.i.d. Gaussian codebooks are employed. In contrast to the recent work on the channel coding counterpart by Scarlett, Tan, and Durisi (2017), the dispersions for spherical and i.i.d. Gaussian codebooks are identical. The ensemble excess-distortion exponents for both spherical and i.i.d. Gaussian codebooks are established for all rates. Furthermore, we show that the i.i.d. Gaussian codebook has a strictly larger excess-distortion exponent than its spherical counterpart for any rate greater than the ensemble rate-distortion function derived by Lapidoth.
机译:Lapidoth(1997)所考虑的速率失真鞍点问题在于,当人们不得不使用随机高斯码本并且采用最小(欧几里得)距离编码时,找到压缩任意遍历源的最小速率。在本文中,我们将Lapidoth的分析扩展到几个方向。首先,我们考虑完善的渐近性。特别是,当源静止且无记忆时,我们将建立问题的二阶,中度和大偏差渐近性。其次,在随机高斯码本中,拉皮多斯指的是随机码字的集合,每个字都是从n维球体的表面独立且均匀地绘制的。更准确地说,我们称其为球形密码本。我们也考虑i.i.d.高斯码本,其中每个随机码字均独立于乘积高斯分布绘制。当i.i.d时,我们得出二阶,中度和大偏差渐近性。使用高斯码本。与Scarlett,Tan和Durisi(2017)最近在信道编码方面的工作相反,球形和i.d.高斯密码本是相同的。球面和i.i.d的整体超失真指数高斯码本适用于所有费率。此外,我们证明了i.d.对于任何比Lapidoth推导的整体速率失真函数大的速率,高斯密码本的严格失真指数都比其球形副本大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号