首页> 外文期刊>IEEE transactions on information forensics and security >Machine Learning Cryptanalysis of a Quantum Random Number Generator
【24h】

Machine Learning Cryptanalysis of a Quantum Random Number Generator

机译:量子随机数发生器的机器学习密码分析

获取原文
获取原文并翻译 | 示例

摘要

Random number generators (RNGs) that are crucial for cryptographic applications have been the subject of adversarial attacks. These attacks exploit environmental information to predict generated random numbers that are supposed to be truly random and unpredictable. Though quantum random number generators (QRNGs) are based on the intrinsic indeterministic nature of quantum properties, the presence of classical noise in the measurement process compromises the integrity of a QRNG. In this paper, we develop a predictive machine learning (ML) analysis to investigate the impact of deterministic classical noise in different stages of an optical continuous variable QRNG. Our ML model successfully detects inherent correlations when the deterministic noise sources are prominent. After appropriate filtering and randomness extraction processes are introduced, our QRNG system, in turn, demonstrates its robustness against ML. We further demonstrate the robustness of our ML approach by applying it to uniformly distributed random numbers from the QRNG and a congruential RNG. Hence, our result shows that ML has potentials in benchmarking the quality of RNG devices.
机译:对于加密应用至关重要的随机数生成器(RNG)一直是对抗攻击的主题。这些攻击利用环境信息来预测生成的随机数,这些随机数应该是真正的随机且不可预测。尽管量子随机数发生器(QRNG)基于量子性质的内在不确定性,但是在测量过程中经典噪声的存在会损害QRNG的完整性。在本文中,我们开发了一种预测性机器学习(ML)分析,以研究确定性经典噪声在光学连续变量QRNG不同阶段的影响。当确定性噪声源突出时,我们的ML模型成功检测到固有的相关性。在引入了适当的过滤和随机性提取过程之后,我们的QRNG系统又证明了它对ML的鲁棒性。通过将其应用于QRNG和同余RNG均匀分布的随机数,我们进一步证明了ML方法的鲁棒性。因此,我们的结果表明ML具有基准化RNG设备质量的潜力。

著录项

  • 来源
  • 作者单位

    Nano-Neuro-Inspired Research Laboratory, School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW, Australia;

    Department of Quantum Science, Centre of Excellence for Quantum Computation and Communication Technology, Research School of Physics and Engineering, The Australian National University, Canberra, ACT, Australia;

    Department of Quantum Science, Centre of Excellence for Quantum Computation and Communication Technology, Research School of Physics and Engineering, The Australian National University, Canberra, ACT, Australia;

    Department of Quantum Science, Centre of Excellence for Quantum Computation and Communication Technology, Research School of Physics and Engineering, The Australian National University, Canberra, ACT, Australia;

    Nano-Neuro-Inspired Research Laboratory, School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW, Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Entropy; Machine learning; Generators; Convolution; Cryptography; Feature extraction; Training;

    机译:熵;机器学习;生成器;卷积;密码学;特征提取;训练;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号