首页> 外文期刊>IEEE transactions on information forensics and security >Deep Learning Hierarchical Representation From Heterogeneous Flow-Level Communication Data
【24h】

Deep Learning Hierarchical Representation From Heterogeneous Flow-Level Communication Data

机译:从异构流级通信数据进行深度学习层次表示

获取原文
获取原文并翻译 | 示例

摘要

The success of a detection model depends heavily on feature engineering. Deep learning has been successfully applied in numerous research fields as a universal representation learning method. However, the heterogeneity of flow-level communication data obstructs the application of deep learning to communication representation learning, and research on this problem is still lacking. To cope with this problem, we propose a heterogeneous communication data-encoding approach to extract fixed-size encoding data to apply deep learning to heterogeneous communication data by preserving the spatiotemporal characteristics of the data. Then, we propose a feature extractor based on deep learning to automatically learn hierarchical and robust communication representations without expert knowledge. We show that the proposed approach can replicate and optimize the key steps of feature engineering well and learn hierarchical representations directly from heterogeneous communication data. Moreover, compared with features extracted with principal component analysis (PCA), manifold learning and manually crafted methods, the features extracted by deep learning are more robust and are characterized by their better adaptability to various classifiers and datasets. To the best of our knowledge, the initial work here is the first to apply deep learning techniques to heterogeneous flow-level data; consequently, the heterogeneous communication data processing method can provide technical means for the application of deep learning in other communication-related research fields.
机译:检测模型的成功在很大程度上取决于特征工程。深度学习已作为通用表示学习方法成功地应用于许多研究领域。然而,流级通信数据的异质性阻碍了深度学习在通信表示学习中的应用,仍然缺乏对此问题的研究。为了解决这个问题,我们提出了一种异构通信数据编码方法,通过保留数据的时空特性,提取固定大小的编码数据,以将深度学习应用于异构通信数据。然后,我们提出了一种基于深度学习的特征提取器,无需专家知识即可自动学习分层且鲁棒的通信表示。我们表明,所提出的方法可以很好地复制和优化特征工程的关键步骤,并直接从异构通信数据中学习层次表示。此外,与通过主成分分析(PCA),流形学习和手工制作的方法提取的特征相比,通过深度学习提取的特征更强大,并且具有对各种分类器和数据集的更好适应性。据我们所知,这里的最初工作是第一个将深度学习技术应用于异构流级数据的工作。因此,异构通信数据处理方法可以为深度学习在其他通信相关研究领域的应用提供技术手段。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号