首页> 外文期刊>IEEE transactions on information forensics and security >Bi-Directional Center-Constrained Top-Ranking for Visible Thermal Person Re-Identification
【24h】

Bi-Directional Center-Constrained Top-Ranking for Visible Thermal Person Re-Identification

机译:双向中心约束顶部排列,可重新识别热力人员

获取原文
获取原文并翻译 | 示例

摘要

Visible thermal person re-identification (VT-REID) is a task of matching person images captured by thermal and visible cameras, which is an extremely important issue in night-time surveillance applications. Existing cross-modality recognition works mainly focus on learning shamble feature representations to handle the cross-modality discrepancies. However, apart from the cross-modality discrepancy caused by different camera spectrums, VT-REID also suffers from large cross-modality and intra-modality variations caused by different camera environments and human poses, and so on. In this paper, we propose a dual-path network with a novel bi-directional dual-constrained top-ranking (BDTR) loss to learn discriminative feature representations. It is featured in two aspects: 1) end-to-end learning without extra metric learning step and 2) the dual-constraint simultaneously handles the cross-modality and intra-modality variations to ensure the feature discriminability. Meanwhile, a bi-directional center-constrained top-ranking (eBDTR) is proposed to incorporate the previous two constraints into a single formula, which preserves the properties to handle both cross-modality and intra-modality variations. The extensive experiments on two cross-modality re-ID datasets demonstrate the superiority of the proposed method compared to the state-of-the-arts.
机译:可见的热人员重新识别(VT-REID)是匹配热和可见摄像机捕获的人员图像的任务,这在夜间监视应用中是一个非常重要的问题。现有的跨模式识别工作主要集中在学习混杂特征表示以处理跨模式差异。但是,除了由不同相机光谱引起的跨模态差异之外,VT-REID还遭受由不同相机环境和人体姿势等引起的较大的跨模态和模态内变化。在本文中,我们提出了一种具有新颖的双向双重约束顶级(BDTR)损失的双重路径网络,以学习判别性特征表示。它具有两个方面的特征:1)无需额外度量学习步骤的端到端学习; 2)双重约束同时处理跨模态和模态内变异,以确保特征可识别性。同时,提出了双向中心约束最高排名(eBDTR),以将前两个约束合并到单个公式中,从而保留了处理交叉模态和模态内变化的属性。在两个交叉模态re-ID数据集上进行的广泛实验证明了与现有技术相比,该方法的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号