首页> 外文期刊>IEEE transactions on information forensics and security >Multiple Sensitive Values-Oriented Personalized Privacy Preservation Based on Randomized Response
【24h】

Multiple Sensitive Values-Oriented Personalized Privacy Preservation Based on Randomized Response

机译:基于随机响应的面向多重敏感价值的个性化隐私保护

获取原文
获取原文并翻译 | 示例

摘要

In the case where the private data is not equally important, personalized local privacy preservation based on randomized response (RR) is studied in the collection of sensitive data. So far, the existing RR mechanisms for multiple discrete private sources, which are termed as conventional randomized response (CRR) mechanisms, focus on a universal approach that exerts the same amount of privacy preservation for all sensitive values, without catering for their concrete privacy requirements. An immediate consequence is that they may be offering insufficient protection to a subset of data contributors with relatively higher privacy requirements, while applying excessive privacy control to another subset with relatively lower privacy requirements. Motivated by this, a novel perturbation framework, which is termed as personalized randomized response (PRR) mechanism, is proposed to achieve personalized privacy preservation (Personalized-PP) by designing the statistical privatization mechanism for multiple sensitive values. The proposed PRR technique introduces the weights for different sensitive values according to their sensitivity, and then introduces the weights into the decision of PRR by considering the concrete requirements for privacy, and thus, attains a higher data utility with respect to the quality of statistics while guaranteeing Personalized-PP. The estimate error of the private distribution is used to measure the quality of statistics for the two RR mechanisms. Theoretical study shows that the estimate error of PRR mechanism is smaller than that of the CRR mechanism for a certain same subjective privacy leakage degree. In particular, simulation results reveal the circumstances where CRR mechanism fails to provide Personalized-PP, and then establish the superiority of PRR mechanism.
机译:在私人数据不那么重要的情况下,在敏感数据的收集中研究了基于随机响应(RR)的个性化本地隐私保护。到目前为止,用于多个离散私人资源的现有RR机制(称为常规随机响应(CRR)机制)专注于一种通用方法,该方法对所有敏感值都施加相同数量的隐私保护,而不满足其具体的隐私要求。直接的后果是,它们可能无法为具有较高隐私要求的数据提供者的子集提供足够的保护,而将过多的隐私控制应用于具有较低隐私要求的另一个子集。为此,提出了一种新颖的扰动框架,称为个性化随机响应(PRR)机制,旨在通过针对多个敏感值设计统计私有化机制来实现个性化隐私保护(Personalized-PP)。提出的PRR技术根据其敏感度引入不同敏感值的权重,然后通过考虑隐私的具体要求将权重引入PRR的决策中,从而在提高统计质量的同时提高数据实用性。保证个性化PP。专用分配的估计误差用于衡量两个RR机制的统计质量。理论研究表明,在一定的主观隐私泄露度下,PRR机制的估计误差小于CRR机制的估计误差。特别是,仿真结果揭示了CRR机制无法提供Personalized-PP的情况,从而确立了PRR机制的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号