【24h】

On the Dissection of Evasive Malware

机译:关于逃避恶意软件的剖析

获取原文
获取原文并翻译 | 示例

摘要

Complex malware samples feature measures to impede automatic and manual analyses, making their investigation cumbersome. While automatic characterization of malware benefits from recently proposed designs for passive monitoring, the subsequent dissection process still sees human analysts struggling with adversarial behaviors, many of which also closely resemble those studied for automatic systems. This gap affects the day-to-day analysis of complex samples and researchers have not yet attempted to bridge it. We make a first step down this road by proposing a design that can reconcile transparency requirements with manipulation capabilities required for dissection. Our open-source prototype BluePill (i) offers a customizable execution environment that remains stealthy when analysts intervene to alter instructions and data or run third-party tools, (ii) is extensible to counteract newly encountered anti-analysis measures using insights from the dissection, and (iii) can accommodate program analyses that aid analysts, as we explore for taint analysis. On a set of highly evasive samples BluePill resulted as stealthy as commercial sandboxes while offering new intervention and customization capabilities for dissection.
机译:复杂的恶意软件样本具有阻止自动和手动分析的措施,从而使调查工作繁琐。尽管恶意软件的自动表征受益于最近提出的用于被动监视的设计,但随后的解剖过程仍使人类分析家在对抗行为方面苦苦挣扎,其中许多行为也与针对自动系统研究的行为极为相似。这种差距影响着对复杂样品的日常分析,研究人员尚未尝试弥补这一差距。我们通过提出一种可以使透明度要求与解剖所需的操纵能力相协调的设计,迈出了第一步。我们的开源原型BluePill(i)提供了一个可定制的执行环境,当分析人员干预以更改指令和数据或运行第三方工具时,它仍然是隐身的;(ii)可扩展以使用解剖学的见解来抵消新遇到的反分析措施,并且(iii)可以容纳有助于分析人员进行的程序分析,因为我们正在探索进行污点分析。在一组高度逃避的样本上,BluePill像商业沙箱一样隐身,同时提供了用于解剖的新干预和定制功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号