首页> 外文期刊>IEEE transactions on information forensics and security >AHCM: Adaptive Huffman Code Mapping for Audio Steganography Based on Psychoacoustic Model
【24h】

AHCM: Adaptive Huffman Code Mapping for Audio Steganography Based on Psychoacoustic Model

机译:AHCM:基于心理声学模型的音频隐写术自适应霍夫曼代码映射

获取原文
获取原文并翻译 | 示例

摘要

Most current audio steganographic methods are content non-adaptive which have poor security and low embedding capacity. This paper proposes a generalized adaptive Huffman code mapping (AHCM) framework for obtaining higher secure payload. To avoid the frame-offset effect of audio codec, we first establish a distortion-limited suppressible code space, which realizes data embedding by using equal-length entropy codes. Furthermore, a stego key is used to dynamically build Huffman code mapping of each frame for improving acoustic imperceptibility and statistical undetectability. We then consider integrating psychoacoustic model (PAM) of intra-frame with frame-level perceptual distortion of inter-frame to obtain minimized total distortion. Finally, we present an implementation of the proposed AHCM framework on MP3 audios. A distortion function based on the PAM and an optimal steganographic frame path are, respectively, devised for adaptively embedding via employing syndrome-trellis codes. Experimental results demonstrate that our approach is, indeed, able to achieve higher secure steganographic capacity and better acoustic concealment. The detection accuracy of 320-kbps-mp3 datasets is lower than 65% when the embedding payload reaches 11 kbps, which is decreased by 11.8%-13.4% than the state-of-the-art steganographic methods.
机译:当前大多数音频隐写方法是内容不自适应的,其安全性差并且嵌入能力低。本文提出了一种通用的自适应霍夫曼代码映射(AHCM)框架,以获得更高的安全有效载荷。为了避免音频编解码器的帧偏移效应,我们首先建立了失真受限的可抑制代码空间,该空间通过使用等长熵代码实现数据嵌入。此外,隐秘密钥用于动态构建每个帧的霍夫曼代码映射,以改善声学不可感知性和统计不可检测性。然后,我们考虑将帧内的心理声学模型(PAM)与帧间的帧级感知失真进行集成,以使总失真最小化。最后,我们介绍了MP3音频上建议的AHCM框架的实现。分别设计了基于PAM的失真函数和最佳隐写帧路径,以通过使用校正子网格码进行自适应嵌入。实验结果表明,我们的方法确实能够实现更高的安全隐写能力和更好的声音隐蔽性。当嵌入有效负载达到11 kbps时,320 kbps-mp3数据集的检测精度低于65%,比最新的隐写方法降低了11.8%-13.4%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号