首页> 外文期刊>IEEE transactions on information forensics and security >HEDGE: Efficient Traffic Classification of Encrypted and Compressed Packets
【24h】

HEDGE: Efficient Traffic Classification of Encrypted and Compressed Packets

机译:对冲:加密和压缩数据包的有效流量分类

获取原文
获取原文并翻译 | 示例

摘要

As the size and source of network traffic increase, so does the challenge of monitoring and analyzing network traffic. Therefore, sampling algorithms are often used to alleviate these scalability issues. However, the use of high entropy data streams, through the use of either encryption or compression, further compounds the challenge as current state-of-the-art algorithms cannot accurately and efficiently differentiate between encrypted and compressed packets. In this paper, we propose a novel traffic classification method named High Entropy DistinGuishEr (HEDGE) to distinguish between compressed and encrypted traffic. HEDGE is based on the evaluation of the randomness of the data streams and can be applied to individual packets without the need to have access to the entire stream. The findings from the evaluation show that our approach outperforms current state of the art. We also make available our statistically sound dataset, based on known benchmarks, to the wider research community.
机译:随着网络流量的大小和来源的增加,监视和分析网络流量的挑战也随之增加。因此,采样算法通常用于缓解这些可伸缩性问题。然而,通过使用加密或压缩,使用高熵数据流进一步加剧了挑战,因为当前的最新算法无法准确,有效地区分加密和压缩数据包。在本文中,我们提出了一种新的流量分类方法,称为高熵DistinGuishEr(HEDGE),以区分压缩流量和加密流量。 HEDGE基于对数据流随机性的评估,可以应用于单个数据包,而无需访问整个流。评估结果表明,我们的方法优于现有技术。我们还将基于已知基准的统计合理的数据集提供给更广泛的研究社区。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号