首页> 外文期刊>IEEE transactions on information forensics and security >Contactless Fingerprint Recognition Based on Global Minutia Topology and Loose Genetic Algorithm
【24h】

Contactless Fingerprint Recognition Based on Global Minutia Topology and Loose Genetic Algorithm

机译:基于全局细节拓扑和松散遗传算法的非接触指纹识别

获取原文
获取原文并翻译 | 示例

摘要

Contactless fingerprint recognition is highly promising and an essential component in the automatic fingerprint identification system. However, due to the inherent characteristic of perspective distortions of contactless fingerprints, achieving a highly accurate contactless fingerprint recognition system is very challenging. In this paper, we propose a robust contactless fingerprint recognition method based on global minutia topology and loose genetic algorithm. In order to avoid the inaccurate minutiae alignment problem suffered in conventional transformation-based methods, the minutiae correspondence is established by optimizing an energy function of the similarity matrix. We define an innovative similarity matrix based on both minutiae and minutia-pairs, which takes the global minutia topology into account. By adopting a distortion-free feature of ridge count to define the similarity, the problem of perspective distortions is effectively overcome. To solve the optimization, we propose a new genetic algorithm (GA) named loose GA with new mutation and crossover operators. We also propose a strict minutia-pair expanding algorithm to enhance the reliability of the minutiae correspondence. For recognition, a metric for measuring comparison scores which takes advantage of both the global topological similarity and the number of corresponding minutiae is proposed. We evaluate our method using two contactless fingerprint benchmark databases and achieve competitive performances in comparison with the state-of-the-art methods.
机译:非接触式指纹识别非常有前途,并且是自动指纹识别系统中必不可少的组件。但是,由于非接触式指纹的透视畸变的固有特性,实现高精度的非接触式指纹识别系统非常具有挑战性。本文提出了一种基于全局细节拓扑和松散遗传算法的鲁棒非接触指纹识别方法。为了避免传统的基于变换的方法中出现的不精确的细节对齐问题,通过优化相似性矩阵的能量函数来建立细节对应。我们基于小细节和小细节对定义了一个创新的相似性矩阵,该矩阵考虑了全局小细节拓扑。通过采用脊数的无失真特征来定义相似性,可以有效克服透视失真的问题。为了解决该优化问题,我们提出了一种新的遗传算法(GA),名为GA,具有新的变异和交叉算子。我们还提出了严格的细节对扩展算法,以增强细节对应的可靠性。为了识别,提出了一种用于测量比较分数的度量,该度量同时利用了全局拓扑相似性和相应细节的数量。我们使用两个非接触式指纹基准数据库评估了我们的方法,并与最先进的方法进行比较,获得了出色的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号