首页> 外文期刊>IEEE transactions on information forensics and security >Joint Discriminative Learning of Deep Dynamic Textures for 3D Mask Face Anti-Spoofing
【24h】

Joint Discriminative Learning of Deep Dynamic Textures for 3D Mask Face Anti-Spoofing

机译:用于3D蒙版脸部反欺骗的深度动态纹理的联合判别学习

获取原文
获取原文并翻译 | 示例

摘要

Three-dimensional mask spoofing attacks have been one of the main challenges in face recognition. Compared with a 3D mask, a real face displays different facial motion patterns that are reflected by different facial dynamic textures. However, a large portion of these facial motion differences is subtle. We find that the subtle facial motion can be fully captured by multiple deep dynamic textures from a convolutional layer of a convolutional neural network, but not all deep dynamic textures from different spatial regions and different channels of a convolutional layer are useful for differentiation of subtle motions between real faces and 3D masks. In this paper, we propose a novel feature learning model to learn discriminative deep dynamic textures for 3D mask face anti-spoofing. A novel joint discriminative learning strategy is further incorporated in the learning model to jointly learn the spatial- and channel-discriminability of the deep dynamic textures. The proposed joint discriminative learning strategy can be used to adaptively weight the discriminability of the learned feature from different spatial regions or channels, which ensures that more discriminative deep dynamic textures play more important roles in face/mask classification. Experiments on several publicly available data sets validate that the proposed method achieves promising results in intra- and cross-data set scenarios.
机译:三维蒙版欺骗攻击已成为面部识别的主要挑战之一。与3D蒙版相比,真实的面部显示不同的面部运动模式,这些模式由不同的面部动态纹理反映。然而,这些面部动作差异的很大一部分是微妙的。我们发现微妙的面部运动可以被卷积神经网络的卷积层中的多个深度动态纹理完全捕获,但是并非所有来自卷积层不同空间区域和不同通道的深度动态纹理都可用于区分微妙运动在真实面孔和3D蒙版之间。在本文中,我们提出了一种新颖的特征学习模型,以学习用于3D蒙版脸部反欺骗的可区分的深层动态纹理。一种新的联合判别式学习策略被进一步整合到学习模型中,以共同学习深度动态纹理的空间和通道可辨别性。提出的联合判别学习策略可用于自适应加权来自不同空间区域或通道的学习特征的判别能力,从而确保更具判别力的深度动态纹理在人脸/蒙版分类中发挥更重要的作用。在几个公开可用的数据集上进行的实验验证了该方法在内部数据集和交叉数据集场景中均取得了可喜的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号